17 research outputs found

    Three-slit experiments and quantum nonlocality

    Full text link
    An interesting link between two very different physical aspects of quantum mechanics is revealed; these are the absence of third-order interference and Tsirelson's bound for the nonlocal correlations. Considering multiple-slit experiments - not only the traditional configuration with two slits, but also configurations with three and more slits - Sorkin detected that third-order (and higher-order) interference is not possible in quantum mechanics. The EPR experiments show that quantum mechanics involves nonlocal correlations which are demonstrated in a violation of the Bell or CHSH inequality, but are still limited by a bound discovered by Tsirelson. It now turns out that Tsirelson's bound holds in a broad class of probabilistic theories provided that they rule out third-order interference. A major characteristic of this class is the existence of a reasonable calculus of conditional probability or, phrased more physically, of a reasonable model for the quantum measurement process.Comment: 9 pages, no figur

    A hierarchy of compatibility and comeasurability levels in quantum logics with unique conditional probabilities

    Full text link
    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders - von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.Comment: 12 page

    Different Types of Conditional Expectation and the Lueders - von Neumann Quantum Measurement

    Full text link
    In operator algebra theory, a conditional expectation is usually assumed to be a projection map onto a sub-algebra. In the paper, a further type of conditional expectation and an extension of the Lueders - von Neumann measurement to observables with continuous spectra are considered; both are defined for a single operator and become a projection map only if they exist for all operators. Criteria for the existence of the different types of conditional expectation and of the extension of the Lueders - von Neumann measurement are presented, and the question whether they coincide is studied. All this is done in the general framework of Jordan operator algebras. The examples considered include the type I and type II operator algebras, the standard Hilbert space model of quantum mechanics, and a no-go result concerning the conditional expectation of observables that satisfy the canonical commutator relation.Comment: 10 pages, the original publication is available at http://www.springerlink.co

    A Representation of Quantum Measurement in Nonassociative Algebras

    Full text link
    Starting from an abstract setting for the Lueders - von Neumann quantum measurement process and its interpretation as a probability conditionalization rule in a non-Boolean event structure, the author derived a certain generalization of operator algebras in a preceding paper. This is an order-unit space with some specific properties. It becomes a Jordan operator algebra under a certain set of additional conditions, but does not own a multiplication operation in the most general case. A major objective of the present paper is the search for such examples of the structure mentioned above that do not stem from Jordan operator algebras; first natural candidates are matrix algebras over the octonions and other nonassociative rings. Therefore, the case when a nonassociative commutative multiplication exists is studied without assuming that it satisfies the Jordan condition. The characteristics of the resulting algebra are analyzed. This includes the uniqueness of the spectral resolution as well as a criterion for its existence, subalgebras that are Jordan algebras, associative subalgebras, and more different levels of compatibility than occurring in standard quantum mechanics. However, the paper cannot provide the desired example, but contribute to the search by the identification of some typical differences between the potential examples and the Jordan operator algebras and by negative results concerning some first natural candidates. The possibility that no such example exists cannot be ruled out. However, this would result in an unexpected new characterization of Jordan operator algebras, which would have a significant impact on quantum axiomatics since some customary axioms (e.g., powerassociativity or the sum postulate for observables) might turn out to be redundant then.Comment: 14 pages, the original publication is available at http://www.springerlink.co

    Conditional expectations associated with quantum states

    Full text link
    An extension of the conditional expectations (those under a given subalgebra of events and not the simple ones under a single event) from the classical to the quantum case is presented. In the classical case, the conditional expectations always exist; in the quantum case, however, they exist only if a certain weak compatibility criterion is satisfied. This compatibility criterion was introduced among others in a recent paper by the author. Then, state-independent conditional expectations and quantum Markov processes are studied. A classical Markov process is a probability measure, together with a system of random variables, satisfying the Markov property and can equivalently be described by a system of Markovian kernels (often forming a semigroup). This equivalence is partly extended to quantum probabilities. It is shown that a dynamical (semi)group can be derived from a given system of quantum observables satisfying the Markov property, and the group generators are studied. The results are presented in the framework of Jordan operator algebras, and a very general type of observables (including the usual real-valued observables or self-adjoint operators) is considered.Comment: 10 pages, the original publication is available at http://www.aip.or

    Non-Boolean probabilities and quantum measurement

    Full text link
    A non-Boolean extension of the classical probability model is proposed. The non-Boolean probabilities reproduce typical quantum phenomena. The proposed model is more general and more abstract, but easier to interpret, than the quantum mechanical Hilbert space formalism and exhibits a particular phenomenon (state-independent conditional probabilities) which may provide new opportunities for an understanding of the quantum measurement process. Examples of the proposed model are provided, using Jordan operator algebras.Comment: 12 pages, the original publication is available at http://www.iop.or
    corecore