28 research outputs found

    A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target

    Get PDF
    The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy

    Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+ currents

    Get PDF
    This study investigated whether the mechanism of action of levetiracetam (LEV) is related to effects on neuronal voltage-gated Na+ or T-type Ca2+ currents. Rat neocortical neurones in culture were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study voltage-gated Naf current. Additionally, visually identified pyramidal neurones in the CA1 area of rat hippocampal slices were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study low-voltage-gated (T-type) Ca2+ current. LEV (10 muM-1 mM) did not modify the Na+ current amplitude and did not change (200 muM) the steady-state activation and inactivation, the time to peak, the fast kinetics of the inactivation and the recovery from the steady-state inactivation of the Na+ current. Likewise, LEV (32-100 muM) did not modify the amplitude and did not change the steady-state activation and inactivation, the time to peak, the fast kinetics of the inactivation and the recovery from the steady-state inactivation of the T-type Ca2+ current. In conclusion, neuronal voltage-gated Na+ channels do not appear directly involved in the antiepileptic mechanism of action of LEV, and LEV was devoid of effect on the low-voltage-gated (T-type) Ca2+ current in hippocampal neurones. (C) 2001 BEA Trading Ltd
    corecore