5 research outputs found

    Contribution to the use of direct oral anticoagulants (DOAC) in adults with congenital heart desease

    No full text
    Die vorliegende Studie untersucht den Einsatz direkter oraler Antikoagulantien bei Erwachsenen mit angeborenem Herzfehler, einer wachsenden Patientengruppe mit hohem thromboembolischem Risiko. Die Resultate der 55 untersuchten Patienten zeigen, dass direkte orale Antikoagulantien eine effektive und gut tolerierte Möglichkeit der Antikoagulation ohne signifikante Nebenwirkungen, Blutungsereignisse oder Thrombosen darstellen, wobei die Erfahrung einer Therapie mit direkten oralen Antikoagulantien bei Erwachsenen mit angeborenem Herzfehler derzeit noch begrenzt ist.In this study the use of direct oral anticoagulants is investigated in adults with congenital heart desease, an increasing group of patients at high risk of thromboembolic complications. The results of 55 analysed patients showed that direct oral anticoagulants are an effective and well-tolerated option for anticoagulation without significant side effects, bleeding or thrombosis, although the experience of direct oral anticoagulant therapy in adults with congenital heart desease is currently limited

    Superior skin cancer classification by the combination of human and artificial intelligence

    No full text
    Background: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification. Methods: Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300 biopsy-verified skin lesions into those five classes. Taking into account the certainty of the decisions, the two independently determined diagnoses were combined to a new classifier with the help of a gradient boosting method. The primary end-point of the study was the correct classification of the images into five designated categories, whereas the secondary end-point was the correct classification of lesions as either benign or malignant (binary classification). Findings: Regarding the multiclass task, the combination of man and machine achieved an accuracy of 82.95%. This was 1.36% higher than the best of the two individual classifiers (81.59% achieved by the CNN). Owing to the class imbalance in the binary problem, sensitivity, but not accuracy, was examined and demonstrated to be superior (89%) to the best individual classifier (CNN with 86.1%). The specificity in the combined classifier decreased from 89.2% to 84%. However, at an equal sensitivity of 89%, the CNN achieved a specificity of only 81.5% Interpretation: Our findings indicate that the combination of human and artificial intelligence achieves superior results over the independent results of both of these systems. (C) 2019 The Author(s). Published by Elsevier Ltd

    Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks

    No full text
    Background: Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer screenings in which multiple diagnoses need to be taken into account. Methods: Using 11,444 dermoscopic images, which covered dermatologic diagnoses comprising the majority of commonly pigmented skin lesions commonly faced in skin cancer screenings, a CNN was trained through novel deep learning techniques. A test set of 300 biopsy-verified images was used to compare the classifier's performance with that of 112 dermatologists from 13 German university hospitals. The primary end-point was the correct classification of the different lesions into benign and malignant. The secondary end-point was the correct classification of the images into one of the five diagnostic categories. Findings: Sensitivity and specificity of dermatologists for the primary end-point were 74.4% (95% confidence interval [CI]: 67.0-81.8%) and 59.8% (95% CI: 49.8-69.8%), respectively. At equal sensitivity, the algorithm achieved a specificity of 91.3% (95% CI: 85.5-97.1%). For the secondary end-point, the mean sensitivity and specificity of the dermatologists were at 56.5% (95% CI: 42.8-70.2%) and 89.2% (95% CI: 85.0-93.3%), respectively. At equal sensitivity, the algorithm achieved a specificity of 98.8%. Two-sided McNemar tests revealed significance for the primary end-point (p < 0.001). For the secondary end-point, outperformance (p < 0.001) was achieved except for basal cell carcinoma (on-par performance). Interpretation: Our findings show that automated classification of dermoscopic melanoma and nevi images is extendable to a multiclass classification problem, thus better reflecting clinical differential diagnoses, while still outperforming dermatologists at a significant level (p < 0.001). (C) 2019 The Author(s). Published by Elsevier Ltd

    Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks

    No full text
    corecore