3 research outputs found

    Low damping magnetic properties and perpendicular magnetic anisotropy in the Heusler alloy Fe1.5CoGe

    Get PDF
    We present a study of the dynamic magnetic properties of TiN-buffered epitaxial thin films of the Heusler alloy Fe1.5CoGe. Thickness series annealed at different temperatures are prepared and the magnetic damping is measured, a lowest value of α = 2.18 × 10−3 is obtained. The perpendicular magnetic anisotropy properties in Fe1.5CoGe/MgO are also characterized. The evolution of the interfacial perpendicular anisotropy constant K⊥S with the annealing temperature is shown and compared with the widely used CoFeB/MgO interface. A large volume contribution to the perpendicular anisotropy of (4.3 ± 0.5) × 105 J/m3 is also found, in contrast with vanishing bulk contribution in common Co- and Fe-based Heusler alloys

    Low damping magnetic properties and perpendicular magnetic anisotropy in the Heusler alloy Fe1.5CoGe

    No full text
    We present a study of the dynamic magnetic properties of TiN-buffered epitaxial thin films of the Heusler alloy Fe1.5CoGe. Thickness series annealed at different temperatures are prepared and the magnetic damping is measured, a lowest value of α = 2.18 × 10−3 is obtained. The perpendicular magnetic anisotropy properties in Fe1.5CoGe/MgO are also characterized. The evolution of the interfacial perpendicular anisotropy constant K⊥S with the annealing temperature is shown and compared with the widely used CoFeB/MgO interface. A large volume contribution to the perpendicular anisotropy of (4.3 ± 0.5) × 105 J/m3 is also found, in contrast with vanishing bulk contribution in common Co- and Fe-based Heusler alloys

    From precursor chemistry to gas sensors

    No full text
    The identification of bis-3-(N,N\it N,N-dimethylamino)propyl zinc ([Zn(DMP)2_2], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2_2 is observed without cross-sensitivities against NH3_3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes
    corecore