2 research outputs found

    Myocardial Scar Detection Using High-Resolution Free-Breathing 3D Dark-Blood and Standard Breath-Holding 2D Bright-Blood Late Gadolinium Enhancement MRI:A Comparison of Observer Confidence

    No full text
    Abstract:Objective:To compare observer confidence for myocardial scar detection using 3 different late gadolinium enhancement (LGE) data sets by 2 observers with different levels of experience.Materials and Methods:Forty-one consecutive patients, who were referred for 3D dark-blood LGE MRI before implantable cardioverter-defibrillator implantation or ablation therapy and who underwent 2D bright-blood LGE MRI within a time frame of 3 months, were prospectively included. From all 3D dark-blood LGE data sets, a stack of 2D short-axis slices was reconstructed. All acquired LGE data sets were anonymized and randomized and evaluated by 2 independent observers with different levels of experience in cardiovascular imaging (beginner and expert). Confidence in detection of ischemic scar, nonischemic scar, papillary muscle scar, and right ventricular scar for each LGE data set was scored using a using a 3-point Likert scale (1 = low, 2 = medium, or 3 = high). Observer confidence scores were compared using the Friedman omnibus test and Wilcoxon signed-rank post hoc test.Results:For the beginner observer, a significant difference in confidence regarding ischemic scar detection was observed in favor of reconstructed 2D dark-blood LGE compared with standard 2D bright-blood LGE (p = 0.030) while for the expert observer, no significant difference was found (p = 0.166). Similarly, for right ventricular scar detection, a significant difference in confidence was observed in favor of reconstructed 2D dark-blood LGE compared with standard 2D bright-blood LGE (p = 0.006) while for the expert observer, no significant difference was found (p = 0.662). Although not significantly different for other areas of interest, 3D dark-blood LGE and its derived 2D dark-blood LGE data set showed a tendency to score higher for all areas of interest at both experience levels.Conclusions:The combination of dark-blood LGE contrast and high isotropic voxels may contribute to increased observer confidence in myocardial scar detection, independent of observer's experience level but in particular for beginner observers

    Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging

    No full text
    Aims To evaluate the performance of various semi-automated techniques for quantification of myocardial infarct size on both conventional bright-blood and novel dark-blood late gadolinium enhancement (LGE) images using histopathology as reference standard. Methods and results In 13 Yorkshire pigs, reperfused myocardial infarction was experimentally induced. At 7 weeks post-infarction, both bright-blood and dark-blood LGE imaging were performed on a 1.5 T magnetic resonance scanner. Following magnetic resonance imaging (MRI), the animals were sacrificed, and histopathology was obtained. The percentage of infarcted myocardium was assessed per slice using various semi-automated scar quantification techniques, including the signal threshold vs. reference mean (STRM, using 3 to 8 SDs as threshold) and full-width at half-maximum (FWHM) methods, as well as manual contouring, for both LGE methods. Infarct size obtained by histopathology was used as reference. In total, 24 paired LGE MRI slices and histopathology samples were available for analysis. For both bright-blood and dark-blood LGE, the STRM method with a threshold of 5 SDs led to the best agreement to histopathology without significant bias (-0.23%, 95% CI [-2.99, 2.52%], P = 0.862 and -0.20%, 95% CI [-2.12, 1.72%], P = 0.831, respectively). Manual contouring significantly underestimated infarct size on bright-blood LGE (-1.57%, 95% CI [-2.96, -0.18%], P = 0.029), while manual contouring on dark-blood LGE outperformed semi-automated quantification and demonstrated the most accurate quantification in this study (-0.03%, 95% CI [-0.22, 0.16%], P = 0.760). Conclusion The signal threshold vs. reference mean method with a threshold of 5 SDs demonstrated the most accurate semi-automated quantification of infarcted myocardium, without significant bias compared to histopathology, for both conventional bright-blood and novel dark-blood LGE
    corecore