8 research outputs found

    Recognition of Epstein-Barr Virus in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Symptoms of MS include cognitive, motoric, sensory and visual impairment, pain and fatigue. The genetic background of the host and infection with the herpesvirus family member Epstein-Barr virus (EBV) are risk factors for developing MS but the pathogenic mechanisms are unknown. In this thesis we set out to clarify the putative role of EBV in MS by analyzing the intrathecal viral prevalence, breadth and magnitude of humoral and cellular EBV-specific immune responses and autoimmune responses in MS patients

    Elevated EBNA-1 IgG in MS is associated with genetic MS risk variants

    Get PDF
    Objective: To assess whether MS genetic risk polymorphisms (single nucleotide polymorphism [SNP]) contribute to the enhanced humoral immune response against Epstein-Barr virus (EBV) infection in patients with MS. Methods: Serum anti-EBV nuclear antigen 1 (EBNA-1) and early antigen D (EA-D) immunoglobulin γ (IgG) levels were quantitatively determined in 668 genotyped patients with MS and 147 healthy controls. Anti-varicella-zoster virus (VZV) IgG levels were used as a highly prevalent, non-MS-Associated control herpesvirus. Associations between virus-specific IgG levels and MS risk SNPs were analyzed. Results: IgG levels of EBNA-1, but not EA-D and VZV, were increased in patients with MS compared with healthy controls. Increased EBNA-1 IgG levels were significantly associated with risk alleles of SNP rs2744148 (SOX8), rs11154801 (MYB), rs1843938 (CARD11), and rs7200786 (CLEC16A/CIITA) in an interaction model and a trend toward significance for rs3135388 (HLA-DRB1-1501). In addition, risk alleles of rs694739 (PRDX5/BAD) and rs11581062 (VCAM1) were independently associated and interacted with normal EBNA-1 IgG levels. None of these interactions were associated with EA-D and VZV IgG titers. Conclusions: Several MS-Associated SNPs significantly correlated with differential IgG levels directed to a latent, but not a lytic EBV protein. The data suggest that the aforementioned immune-related genes orchestrate the aberrant EBNA-1 IgG levels

    Prevalence of intrathecal acyclovir resistant virus in herpes simplex encephalitis patients

    Get PDF
    Herpes simplex encephalitis (HSE) is a life-threatening complication of herpes simplex virus (HSV) infection. Acyclovir (ACV) is the antiviral treatment of choice, but may lead to emergence of ACV-resistant (ACVR) HSV due to mutations in the viral UL23 gene encoding for the ACV-targeted thymidine kinase (TK) protein. Here, we determined the prevalence of intrathecal ACVR-associated HSV TK mutations in HSE patients and compared TK genotypes of sequential HSV isolates in paired cerebrospinal fluid (CSF) and blister fluid of mucosal HSV lesions. Clinical samples were obtained from 12 HSE patients, encompassing 4 HSV type 1 (HSV-1) and 8 HSV-2 encephalitis patients. HSV DNA load was determined by real-time PCR and complete HSV TK gene sequences were obtained by nested PCR followed by Sanger sequencing. All HSV-1 HSE patients contained viral TK mutations encompassing 30 unique nucleotide and 13 distinct amino acid mutations. By contrast, a total of 5 unique nucleotide and 4 distinct amino acid changes were detected in 7 of 8 HSV-2 patients. Detected mutations were identified as natural polymorphisms located in non-conserved HSV TK gene regions. ACV therapy did not induce the emergence of ACVR-associated HSV TK mutations in consecutive CSF and mucocutaneous samples of 5 individual patients. Phenotypic susceptibility analysis of these mucocutaneous HSV isolates demonstrated ACV-sensitive virus in 2 HSV-1 HSE patients, whereas in two HSV-2 HSE patients ACVR virus was detected in the absence of known ACVR-associated TK mutations. In conclusion, we did not detect intrathecal ACVR-associated TK mutations in HSV isolates obtained from 12 HSE patients

    Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients

    Get PDF
    T cells are considered pivotal in the pathology of multiple sclerosis (MS), but their function and antigen specificity are unknown. To unravel the role of T cells in MS pathology, we performed a comprehensive analysis on T cells recovered from paired blood, cerebrospinal f

    Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap f

    Get PDF
    Primary varicella-zoster virus (VZV) infection in adults is often complicated by severe pneumonia, which is difficult to treat and is associated with high morbidity and mortality. Here, the simian varicella virus (SVV) nonhuman primate (NHP) model was used to investigate the pathogenesis of varicella pneumonia. SVV infection resulted in transient fever, viremia, and robust virus replication in alveolar pneumocytes and bronchus-associated lymphoid tissue. Clearance of infectious virus from lungs coincided with robust innate immune responses, leading to recruitment of inflammatory cells, mainly neutrophils and lymphocytes, and finally severe acute lung injury. SVV infection caused neutrophil activation and formation of neutrophil extracellular traps (NETs) in vitro and in vivo. Notably, NETs were also detected in lung and blood specimens of varicella pneumonia patients. Lung pathology in the SVV NHP model was associated with dysregulated expression of alveolar epithelial cell tight junction proteins (claudin-2, claudin-10, and claudin-18) and alveolar endothelial adherens junction protein VE-cadherin. Importantly, factors released by activated neutrophils, including NETs, were sufficient to reduce claudin-18 and VE-cadherin expression in NHP lung slice cultures. Collectively, the data indicate that alveolar barrier disruption in varicella pneumonia is associated with NET formation

    EBNA-1 titer gradient in families with multiple sclerosis indicates a genetic contribution

    Get PDF
    OBJECTIVE: In multiplex MS families, we determined the humoral immune response to Epstein-Barr virus nuclear antigen 1 (EBNA-1)-specific immunoglobulin γ (IgG) titers in patients with MS, their healthy siblings, and biologically unrelated healthy spouses and investigated the role of specific genetic loci on the antiviral IgG titers. METHODS: IgG levels against EBNA-1 and varicella zoster virus (VZV) as control were measured. HLA-DRB1*1501 and HLA-A*02 tagging single-nucleotide polymorphisms (SNPs) were genotyped. We assessed the associations between these SNPs and antiviral IgG titers. RESULTS: OR for abundant EBNA-1 IgG was the highest in patients with MS and intermediate in their siblings compared with spouses. We confirmed that HLA-DRB1*1501 is associated with abundant EBNA-1 IgG. After stratification for HLA-DRB1*1501, the EBNA-1 IgG gradient was still significant in patients with MS and young siblings compared with spouses. HLA-A*02 was not explanatory for EBNA-1 IgG titer gradient. No associations for VZV IgG were found. CONCLUSIONS: In families with MS, the EBNA-1 IgG gradient being the highest in patients with MS, intermediate in their siblings, and lowest in biologically unrelated spouses indicates a genetic contribution to EBNA-1 IgG levels that is only partially explained by HLA-DRB1*1501 carriership

    Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses

    Get PDF
    Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501-restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination stud

    Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2–specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing “original antigenic sin.
    corecore