80 research outputs found

    Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser

    Get PDF
    The frequency comb created by a femtosecond mode-locked laser and a microstructured fiber is used to phase coherently measure the frequencies of both the Hg^+ and Ca optical standards with respect to the SI second as realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609 899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition to the unprecedented precision demonstrated here, this work is the precursor to all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when combined with previous measurements, we find no time variations of these atomic frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14} yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let

    Ultra-precise measurement of optical frequency ratios

    Full text link
    We developed a novel technique for frequency measurement and synthesis, based on the operation of a femtosecond comb generator as transfer oscillator. The technique can be used to measure frequency ratios of any optical signals throughout the visible and near-infrared part of the spectrum. Relative uncertainties of 101810^{-18} for averaging times of 100 s are possible. Using a Nd:YAG laser in combination with a nonlinear crystal we measured the frequency ratio of the second harmonic νSH\nu_{SH} at 532 nm to the fundamental ν0\nu_0 at 1064 nm, νSH/ν0=2.000000000000000001×(1±7×1019)\nu_{SH}/\nu_0 = 2.000 000 000 000 000 001 \times (1 \pm 7 \times 10^{-19}).Comment: 4 pages, 4 figure

    Electron Self Energy for the K and L Shell at Low Nuclear Charge

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z=1 to 5 is described. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and 2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure

    Bulletin No. 9: Six points of Especial Botanical Interest in Connecticut

    Get PDF
    The areas described are the Barn Island Marshes, the Connecticut Arboretum, the North Haven Sand Plains, Catlin Wood, Cathedral Pines and the Bigelow Pond Hemlocks. 32 pp

    Cold atom Clocks and Applications

    Full text link
    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133^{133}Cs and 87^{87}Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6×1014τ1/21.6\times 10^{-14}\tau^{-1/2} where τ\tau is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2×10162\times 10^{-16} at 50,000sforthefirsttimeforprimarystandards.Inaddition,theseclocksrealizetheSIsecondwithanaccuracyof50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7\times 10^{-16},oneorderofmagnitudebelowthatofuncooleddevices.Inasecondpart,wedescribetestsofpossiblevariationsoffundamentalconstantsusing, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using ^{87}RbandRb and ^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure

    Absolute frequency measurement of the In+^{+} clock transition with a mode-locked laser

    Get PDF
    The absolute frequency of the In+^{+} 5s21S05s^{2 1}S_{0} - 5s5p3P05s5p^{3}P_{0} clock transition at 237 nm was measured with an accuracy of 1.8 parts in 101310^{13}. Using a phase-coherent frequency chain, we compared the 1S0^{1}S_{0} - 3P0^{3}P_{0} transition with a methane-stabilized He-Ne laser at 3.39 μ\mum which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the He-Ne standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In+^{+} clock transition was found to be 1267402452899.92(0.23)1 267 402 452 899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the He-Ne laser reference. This represents an improvement in accuracy of more than 2 orders of magnitude on previous measurements of the line and now stands as the most accurate measurement of an optical transition in a single ion.Comment: 3 pages, 2 figures. accepted for publication in Opt. Let

    The species-area relationship: new challenges for an old pattern

    Get PDF
    The species-area relationship (i.e., the relationship between area and the number of species found in that area) is one of longest and most frequently studied patterns in nature. Yet there remain some important and interesting questions on the nature of this relationship, its causality, quantification and application for both ecologists and conservation biologists.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore