11 research outputs found

    Radon and aerosol release from open-pit uranium mining

    No full text
    The quantity of /sup 222/Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and /sup 226/Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall

    Prediction of the net radon emission from a model open pit uranium mine

    No full text
    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations and production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 740 Ci/AFR during mining operations and 33 Ci/AFR/yr after abandonment of the mine

    Prediction of the net radon emission from a model open pit uranium mine

    Get PDF
    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations, mine dimensions, production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 630 Ci/RRY (1 RRY one = 1000-MW(e) reactor operating for 1 year) during mining operations and 26 Ci/RRY/y after abandoment of the mine assuming 100% recovery of U/sub 3/O/sub 8/ from the ore, or 700 Ci/RRY and 29 Ci/RRY/y assuming 90.5% recovery

    Laboratory measurements of radon diffusion through multilayered cover systems for uranium tailings

    No full text
    Laboratory measurements of radon fluxes and radon concentration profiles were conducted to characterize the effectiveness of multilayer cover systems for uranium tailings. The cover systems utilized soil and clay materials from proposed disposal sites for the Vitro, Durango, Shiprock, Grand Junction and Riverton tailings piles. Measured radon fluxes were in reasonable agreement with values predicted by multilayer diffusion theory. Results obtained by using air-filled porosities in the diffusion calculations were similar to those obtained by using total porosities. Measured diffusion coefficients were a better basis for predicting radon fluxes than were correlations of diffusion coefficient with moisture or with air porosity. Radon concentration profiles were also fitted by equations for multilayer diffusion in the air-filled space. Layer-order effects in the multilayer cover systems were examined and estimated to amount to 10 to 20 percent for the systems tested. Quality control measurements in support of the multilayer diffusion tests indicated that moisture absorption was not a significant problem in radon flux sampling with charcoal canisters, but that the geometry of the sampler was critical. The geometric design of flux-can samplers was also shown to be important. Enhanced radon diffusion along the walls of the test columns was examined and was found to be insignificant except when the columns had been physically disturbed. Additional moisture injected into two test columns decreased the radon flux, as expected, but appeared to migrate into surrounding materials or to be lost by evaporation. Control of moisture content and compaction in the test columns appeared to be the critical item affecting the accuracies of the experiments

    Chronic Heart Failure Clinical Practice Guidelines’ Class 1-A Pharmacologic Recommendations: Start-to-End Synergistic Drug Therapy?

    No full text
    corecore