2,741 research outputs found

    Multi-photon entanglement from distant single photon sources on demand

    Full text link
    We describe a scheme that allows for the generation of any desired N-photon state on demand. Under ideal conditions, this requires only N single photon sources, laser pulses and linear optics elements. First, the sources should be initialised with the help of single-qubit rotations and repeat-until-success two-qubit quantum gates [Lim et al., Phys. Rev. Lett. 95, 030305 (2005)]. Afterwards, the state of the sources can be mapped onto the state of N newly generated photons whenever needed.Comment: 9 pages, 3 figure

    Degradation of a quantum directional reference frame as a random walk

    Get PDF
    We investigate if the degradation of a quantum directional reference frame through repeated use can be modeled as a classical direction undergoing a random walk on a sphere. We demonstrate that the behaviour of the fidelity for a degrading quantum directional reference frame, defined as the average probability of correctly determining the orientation of a test system, can be fit precisely using such a model. Physically, the mechanism for the random walk is the uncontrollable back-action on the reference frame due to its use in a measurement of the direction of another system. However, we find that the magnitude of the step size of this random walk is not given by our classical model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to clarify the key results. v3: journal reference added, acknowledgements and references update

    Non-Gaussian states for continuous variable quantum computation via Gaussian maps

    Get PDF
    We investigate non-Gaussian states of light as ancillary inputs for generating nonlinear transformations required for quantum computing with continuous variables. We consider a recent proposal for preparing a cubic phase state, find the exact form of the prepared state and perform a detailed comparison to the ideal cubic phase state. We thereby identify the main challenges to preparing an ideal cubic phase state and describe the gates implemented with the non-ideal prepared state. We also find the general form of operations that can be implemented with ancilla Fock states, together with Gaussian input states, linear optics and squeezing transformations, and homodyne detection with feed forward, and discuss the feasibility of continuous variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure

    Impact of Age and HIV Status on Immune Activation, Senescence and Apoptosis

    Get PDF
    Introduction: Residual immune dysfunctions, resembling those that occur during normal aging, may persist even in well-treated people with HIV (PWH), and accelerated aging has been proposed. We aimed to determine if HIV infection is an independent risk factor for T-cell immune dysfunctions including increased immune activation, senescence and apoptosis. Moreover, in PWH we aimed to identify the associations between age and immune activation, senescence and apoptosis. Materials and Methods: We included 780 PWH with suppressed viral replication (<50 copies/mL) and absence of hepatitis B and hepatitis C co-infection and 65 uninfected controls from the Copenhagen Co-morbidity in HIV Infection (COCOMO) Study. Flow cytometry was used to determine T-cell activation (CD38+HLA-DR+), senescence (CD28-CD57+), and apoptosis (CD28-CD95+). T-cell subsets are reported as proportions of CD4+ and CD8+ T-cells. We defined an elevated proportion of a given T-cell subset as above the 75th percentile. Regression models were used to determine the association between HIV status and T-cell subset and in PWH to determine the association between age or HIV-specific risk factors and T-cell subsets. Furthermore, an interaction between HIV status and age on T-cell subsets was investigated with an interaction term in models including both PWH and controls. Models were adjusted for age, sex, BMI, and smoking status. Results: In adjusted models a positive HIV status was associated with elevated proportions of CD8+ activated (p = 0.009), CD4+ senescent (p = 0.004), CD4+ apoptotic (p = 0.002), and CD8+ apoptotic (p = 0.003) T-cells. In PWH a 10-year increase in age was associated with higher proportions of CD4+ and CD8+ senescent (p = 0.001 and p < 0.001) and CD4+ and CD8+ apoptotic T-cells (p < 0.001 and p < 0.001). However, no interaction between HIV status and age was found. Furthermore, in PWH a CD4+/CD8+ ratio < 1 was associated with elevated proportions of T-cell activation, senescence, and apoptosis. Discussion: We found evidence of residual T-cell immune dysfunction in well-treated PWH without HBV or HCV co-infection, and age was associated with T-cell senescence and apoptosis. Our data supports that HIV infection has similar effects as aging on T-cell subsets. However, since no interaction between HIV status and age was found on these parameters, we found no evidence to support accelerated immunological aging in PWH

    Abdominal Adipose Tissue Is Associated With Alterations in Tryptophan-Kynurenine Metabolism and Markers of Systemic Inflammation in People With Human Immunodeficiency Virus

    Get PDF
    Background: While both adipose tissue accumulation and tryptophan metabolism alterations are features of HIV infection, their interplay is unclear. We investigated associations between abdominal adipose tissue, alterations in kynurenine pathway of tryptophan metabolism, and systemic inflammation in people with HIV (PWH). / Methods: 864 PWH and 75 uninfected controls were included. Plasma samples were collected and analyzed for kynurenine metabolites, neopterin, high-sensitivity CRP (hs-CRP), lipids. Regression models were used to test associations in PWH. / Results: PWH had higher kynurenine-to-tryptophan ratio than uninfected individuals (p-value < 0.001). In PWH, increase in waist-to-hip ratio was associated with higher kynurenine-to-tryptophan ratio (p-value 0.009) and quinolinic-to-kynurenic acid ratio (p-value 0.006) and lower kynurenic acid concentration (p-value 0.019). Quinolinic-to-kynurenic acid ratio was associated with higher hs-CRP (p-value < 0.001) and neopterin concentrations (p-value <0.001), while kynurenic acid was associated with lower hs-CRP (p-value 0.025) and neopterin concentrations (p-value 0.034). / Conclusion: In PWH increase in abdominal adipose tissue was associated with increased quinolinic-to-kynurenic acid ratio, suggesting activation of pro-inflammatory pathway of kynurenine metabolism, with reduction of anti-inflammatory molecules, and increase in systemic inflammation. Our results suggest dysregulation of kynurenine metabolism associated with abdominal fat accumulation to be a potential source of inflammation in HIV infection

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiâˆŁâŸ©Ui|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2⌈log⁥2(n)⌉+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log⁥2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Prevalence of Peripheral Artery Disease is Higher in Persons Living with HIV Compared to Uninfected Controls

    Get PDF
    OBJECTIVE: Ankle-brachial index (ABI) is an excellent tool for diagnosing peripheral artery disease (PAD). We aimed to determine the prevalence and risk factors for PAD in people living with HIV (PLWH) compared to uninfected controls. We hypothesized that prevalence of PAD would be higher among PLWH than among controls independent of traditional cardiovascular disease (CVD) risk factors. METHODS: PLWH aged ≄40 were recruited from the Copenhagen comorbidity in HIV infection (COCOMO) study. Sex and age matched uninfected controls were recruited from the Copenhagen General Population Study. We defined PAD as ankle-brachial index (ABI) ≀ 0.9 and assessed risk factors for PAD using logistic regression adjusting for age, sex, smoking status, dyslipidemia, diabetes, hypertension and hsCRP. RESULTS: Among 908 PLWH and 11,106 controls, PAD was detected in 112 (12% CI [95% 10-14]) and 623 (6% [95% 5-6]), respectively (p<0.001); odds ratio (OR)=2.4 [95% 1.9-2.9], adjusted OR=1.7 [95% 1.3-2.3, p<.001]. Traditional CVD risk factors, but not HIV-related variables were associated with PAD. The strength of the association between PAD and HIV tended to be higher with older age (p=0.052, adjusted test for interaction). CONCLUSION: Prevalence of PAD is higher among PLWH compared to uninfected controls, especially among older persons, and remains so after adjusting for traditional CVD risk factors. Our findings expand the evidence base that PLWH have excess arterial disease to also include PAD. The exact biological mechanisms causing this excess risk remain to be elucidated. Until then, focus on management of modifiable traditional risk factors is important

    Optical one-way quantum computing with a simulated valence-bond solid

    Full text link
    One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in an entangled many-spin resource state. It remains a challenge, however, to efficiently produce such resource states. Is it possible to reduce the task of generating these states to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems. This led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb, and Tasaki (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc

    General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

    Full text link
    The estimation of parameters characterizing dynamical processes is central to science and technology. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). Typically, it scales as 1/N^(1/2). Quantum strategies may improve the precision, for noiseless processes, by an extra factor 1/N^(1/2). For noisy processes, it is not known in general if and when this improvement can be achieved. Here we propose a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it captures the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as N increases, independently of the initial state of the probes, and even with use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version. The supplementary material can be found at http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd
    • 

    corecore