36,385 research outputs found

    Instanton constraints and renormalization

    Full text link
    The renormalization is investigated of one-loop quantum fluctuations around a constrained instanton in ϕ4\phi ^4-theory with negative coupling. It is found that the constraint should be renormalized also. This indicates that in general only renormalizable constraints are permitted.Comment: 29 page

    Dynamical Entanglement in Particle Scattering

    Full text link
    This paper explores the connections between particle scattering and quantum information theory in the context of the non-relativistic, elastic scattering of two spin-1/2 particles. An untangled, pure, two-particle in-state is evolved by an S-matrix that respects certain symmetries and the entanglement of the pure out-state is measured. The analysis is phrased in terms of unitary, irreducible representations (UIRs) of the symmetry group in question, either the rotation group for the spin degrees of freedom or the Galilean group for non-relativistic particles. Entanglement may occurs when multiple UIRs appear in the direct sum decomposition of the direct product in-state, but it also depends of the scattering phase shifts. \keywords{dynamical entanglement, scattering, Clebsch-Gordan methods}Comment: 6 pages, submitted to Int. J. Mod. Phys. A as part of MRST 2005 conference proceeding

    Decoherence suppression by uncollapsing

    Full text link
    We show that the qubit decoherence due to zero-temperature energy relaxation can be almost completely suppressed by using the quantum uncollapsing procedure. To protect a qubit state, a partial quantum measurement moves it towards the ground state, where it is kept during the storage period, while the second partial measurement restores the initial state. This procedure preferentially selects the cases without energy decay events. Stronger decoherence suppression requires smaller selection probability; a desired point in this trade-off can be chosen by varying the measurement strength. The experiment can be realized in a straightforward way using the superconducting phase qubit.Comment: 4 page

    Quantum Coherence and Correlations of optical radiation by atomic ensembles interacting with a two-level atom in microwave cavity

    Full text link
    We examine quantum statistics of optical photons emitted from atomic ensembles which are classically driven and simultaneously coupled to a two-level atom via microwave photon exchange. Quantum statistics and correlations are analyzed by calculating second order coherence degree, von Neumann entropy, spin squeezing for multi-particle entanglement, as well as genuine two and three-mode entanglement parameters for steady state and non-equilibrium situations. Coherent transfer of population between the radiation modes and quantum state mapping between the two-level atom and the optical modes are discussed. A potential experimental realization of the theoretical results in a superconducting coplanar waveguide resonator containing diamond crystals with Nitrogen-Vacancy color centers and a superconducting artificial two-level atom is discussed.Comment: 15 pages, 17 figures, submitted to Phys. Rev.

    Factorization and entanglement in general XYZ spin arrays in non-uniform transverse fields

    Full text link
    We determine the conditions for the existence of a pair of degenerate parity breaking separable eigenstates in general arrays of arbitrary spins connected through XYZXYZ couplings of arbitrary range and placed in a transverse field, not necessarily uniform. Sufficient conditions under which they are ground states are also provided. It is then shown that in finite chains, the associated definite parity states, which represent the actual ground state in the immediate vicinity of separability, can exhibit entanglement between any two spins regardless of the coupling range or separation, with the reduced state of any two subsystems equivalent to that of pair of qubits in an entangled mixed state. The corresponding concurrences and negativities are exactly determined. The same properties persist in the mixture of both definite parity states. These effects become specially relevant in systems close to the XXZXXZ limit. The possibility of field induced alternating separable solutions with controllable entanglement side limits is also discussed. Illustrative numerical results for the negativity between the first and the jthj^{\rm th} spin in an open spin ss chain for different values of ss and jj are as well provided.Comment: 6 pages, figures adde

    Teleportation of an atomic ensemble quantum state

    Full text link
    We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction

    Quantum discord in finite XY chains

    Full text link
    We examine the quantum discord between two spins in the exact ground state of finite spin 1/2 arrays with anisotropic XY couplings in a transverse field B. It is shown that in the vicinity of the factorizing field B_s, the discord approaches a common finite non-negligible limit which is independent of the pair separation and the coupling range. An analytic expression of this limit is provided. The discord of a mixture of aligned pairs in two different directions, crucial for the previous results, is analyzed in detail, including the evaluation of coherence effects, relevant in small samples and responsible for a parity splitting at B_s. Exact results for finite chains with first neighbor and full range couplings and their interpretation in terms of such mixtures are provided.Comment: 9 pages, 6 figure

    Simple quantum feedback of a solid-state qubit

    Full text link
    We propose an experiment on quantum feedback control of a solid-state qubit, which is almost within the reach of the present-day technology. Similar to the earlier proposal, the feedback loop is used to maintain the coherent (Rabi) oscillations in a qubit for an arbitrary long time; however, this is done in a significantly simpler way, which requires much smaller bandwidth of the control circuitry. The main idea is to use the quadrature components of the noisy detector current to monitor approximately the phase of qubit oscillations. The price for simplicity is a less-than-ideal operation: the fidelity is limited by about 95%. The feedback loop operation can be experimentally verified by appearance of a positive in-phase component of the detector current relative to an external oscillating signal used for synchronization.Comment: 5 page

    Detecting separable states via semidefinite programs

    Full text link
    We introduce a new technique to detect separable states using semidefinite programs. This approach provides a sufficient condition for separability of a state that is based on the existence of a certain local linear map applied to a known separable state. When a state is shown to be separable, a proof of this fact is provided in the form of an explicit convex decomposition of the state in terms of product states. All states in the interior of the set of separable states can be detected in this way, except maybe for a set of measure zero. Even though this technique is more suited for a numerical approach, a new analytical criterion for separability can also be derived.Comment: 8 pages, accepted for publication in Physical Review
    corecore