34,312 research outputs found
Products of Random Matrices
We derive analytic expressions for infinite products of random 2x2 matrices.
The determinant of the target matrix is log-normally distributed, whereas the
remainder is a surprisingly complicated function of a parameter characterizing
the norm of the matrix and a parameter characterizing its skewness. The
distribution may have importance as an uncommitted prior in statistical image
analysis.Comment: 9 pages, 1 figur
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
One of the main advantages of an optical approach to quantum computing is the
fact that optical fibers can be used to connect the logic and memory devices to
form useful circuits, in analogy with the wires of a conventional computer.
Here we describe an experimental demonstration of a simple quantum circuit of
that kind in which two probabilistic exclusive-OR (XOR) logic gates were
combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio
Towards the chemical tuning of entanglement in molecular nanomagnets
Antiferromagnetic spin rings represent prototypical realizations of highly
correlated, low-dimensional systems. Here we theoretically show how the
introduction of magnetic defects by controlled chemical substitutions results
in a strong spatial modulation of spin-pair entanglement within each ring.
Entanglement between local degrees of freedom (individual spins) and collective
ones (total ring spins) are shown to coexist in exchange-coupled ring dimers,
as can be deduced from general symmetry arguments. We verify the persistence of
these features at finite temperatures, and discuss them in terms of
experimentally accessible observables.Comment: 5 pages, 4 figure
The spatial relation between the event horizon and trapping horizon
The relation between event horizons and trapping horizons is investigated in
a number of different situations with emphasis on their role in thermodynamics.
A notion of constant change is introduced that in certain situations allows the
location of the event horizon to be found locally. When the black hole is
accreting matter the difference in area between the two different horizons can
be many orders of magnitude larger than the Planck area. When the black hole is
evaporating the difference is small on the Planck scale. A model is introduced
that shows how trapping horizons can be expected to appear outside the event
horizon before the black hole starts to evaporate. Finally a modified
definition is introduced to invariantly define the location of the trapping
horizon under a conformal transformation. In this case the trapping horizon is
not always a marginally outer trapped surface.Comment: 16 pages, 1 figur
Entanglement between two fermionic atoms inside a cylindrical harmonic trap
We investigate quantum entanglement between two (spin-1/2) fermions inside a
cylindrical harmonic trap, making use of the von Neumann entropy for the
reduced single particle density matrix as the pure state entanglement measure.
We explore the dependence of pair entanglement on the geometry and strength of
the trap and on the strength of the pairing interaction over the complete range
of the effective BCS to BEC crossover. Our result elucidates an interesting
connection between our model system of two fermions and that of two interacting
bosons.Comment: to appear in PR
Monopoles near the Planck Scale and Unification
Considering our (3+1)-dimensional space-time as, in some way, discrete or l
attice with a parameter , where is the Planck length,
we have investigated the additional contributions of lattice artifact monopoles
to beta-functions of the renormalisation group equations for the running fine
structure constants (i=1,2,3 correspond to the U(1), SU(2) and
SU(3) gauge groups of the Standard Model) in the Family Replicated Gauge Group
Model (FRGGM) which is an extension of the Standard Model at high energies. It
was shown that monopoles have times smaller magnetic charge in FRGGM
than in SM ( is the number of families in FRGGM). We have estimated al
so the enlargement of a number of fermions in FRGGM leading to the suppression
of the asymptotic freedom in the non-Abelian theory. We have shown that, in
contrast to the case of AntiGUT when the FRGGM undergoes the breakdown at
GeV, we have the possibility of unification if the
FRGGM-breakdown occurs at GeV. By numerical calculations we
obtained an example of the unification of all gauge interactions (including
gravity) at the scale GeV. We discussed the
possibility of or (SUSY or not SUSY) unifications.Comment: 49 pages, 7 figure
Spin chains and channels with memory
In most studies of the channel capacity of quantum channels, it is assumed
that the errors in each use of the channel are independent. However, recent
work has begun to investigate the effects of memory or correlations in the
error. This work has led to speculation that interesting non-analytic behaviour
may occur in the capacity. Motivated by these observations, we connect the
study of channel capacities under correlated error to the study of critical
behaviour in many-body physics. This connection enables us the techniques of
many-body physics to either completely solve or understand qualitatively a
number of interesting models of correlated error. The models can display
analogous behaviour to associated many-body systems, including `phase
transitions'.Comment: V2: changes in presentation, some additional comments on
generalisation. V3: In accordance with published version, most (but not all)
details of proofs now included. A separate paper will shortly be submitted
separately with all details and more result
Spontaneous symmetry breaking in strong-coupling lattice QCD at high density
We determine the patterns of spontaneous symmetry breaking in strong-coupling
lattice QCD in a fixed background baryon density. We employ a
next-nearest-neighbor fermion formulation that possesses the SU(N_f)xSU(N_f)
chiral symmetry of the continuum theory. We find that the global symmetry of
the ground state varies with N_f and with the background baryon density. In all
cases the condensate breaks the discrete rotational symmetry of the lattice as
well as part of the chiral symmetry group.Comment: 10 pages, RevTeX 4; added discussion of accidental degeneracy of
vacuum after Eq. (35
- âŠ