24,639 research outputs found

    Leaf stripe resistance of spring barley cultivars

    Get PDF
    Results of six years of screening trials clearly indicate that effective resistance against barley leaf stripe is available, also in modern cultivars. Among the spring barley cultivars that are currently most widely grown in Denmark, Cabaret, Troon, Sebastian, Justina and Brazil appear most resistant, but only Brazil combines a favourable resistance performance (= low mean and standard deviation of environment-adjusted leaf stripe incidence) with a high number of observations (= years of testing). However, the cultivars appearing most resistant over the years are relatively old ones such as Vada, Alabama, Odin and particularly Scarlett, which has been resistant in all years in which it was tested. Amongst the new cultivars, Marigold, Native and SW Immer appear to have the most promising resistance properties so far. However, they have only been tested in two years of which only one had reasonably high infection levels. The results furthermore indicate huge year-to-year variation in infection levels, presumably due to variation in environmental conditions related to leaf stripe infection

    Distance growth of quantum states due to initial system--environment correlations

    Full text link
    Intriguing features of the distance between two arbitrary states of an open quantum system are identified that are induced by initial system-environment correlations. As an example, we analyze a qubit dephasingly coupled to a bosonic environment. Within tailored parameter regimes, initial correlations are shown to substantially increase a distance between two qubit states evolving to long-time limit states according to exact non-Markovian dynamics. It exemplifies the breakdown of the distance contractivity of the reduced dynamics.Comment: 4 pages, 3 figure

    High damage potential of seed-borne spot blotch in organically grown spring barley in Denmark

    Get PDF
    Spot blotch of barley (Bipolaris sorokiniana, perfect state: Cochliobolus sativus) occurs wherever barley is grown but is normally not considered a major problem in Danish barley production. It is therefore not included in routine disease surveys or official variety testing in Denmark. However, recommended seed contamination thresholds are 30% for spring barley and 15% for winter barley. Several spring barley varieties were grown under organic (no seed dressing, mechanical weeding) and conventional (seed dressing with fungicides, herbicide application) production conditions at three sites in Denmark in 2003. The harvested seeds were analysed for contamination levels of seed-borne B. sorokiniana using a blotter method. The percentage of seeds contaminated with B. sorokiniana ranged from about 5 to 95 % and was highly depending on the site, production system and variety. Contamination levels of organically cultivated plots were about twice as high as those of plots receiving conventional treatments. The germinating ability of seeds was highly affected by the level of B. sorokiniana contamination and declined drastically at contamination levels above 60%. This effect appeared to differ among varieties. The 1000-grain weight was not affected by the level of spot blotch contamination of seeds. The results indicate that the importance of spot blotch may be underrated, especially in organic barley production and that the role of varietal resistance should be investigated. More results are expected from ongoing seed analyses

    Optimal multiqubit operations for Josephson charge qubits

    Full text link
    We introduce a method for finding the required control parameters for a quantum computer that yields the desired quantum algorithm without invoking elementary gates. We concentrate on the Josephson charge-qubit model, but the scenario is readily extended to other physical realizations. Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to significantly accelerate quantum algorithms in order to fight decoherence.Comment: 4 pages, 5 figure

    Option Pricing in Multivariate Stochastic Volatility Models of OU Type

    Full text link
    We present a multivariate stochastic volatility model with leverage, which is flexible enough to recapture the individual dynamics as well as the interdependencies between several assets while still being highly analytically tractable. First we derive the characteristic function and give conditions that ensure its analyticity and absolute integrability in some open complex strip around zero. Therefore we can use Fourier methods to compute the prices of multi-asset options efficiently. To show the applicability of our results, we propose a concrete specification, the OU-Wishart model, where the dynamics of each individual asset coincide with the popular Gamma-OU BNS model. This model can be well calibrated to market prices, which we illustrate with an example using options on the exchange rates of some major currencies. Finally, we show that covariance swaps can also be priced in closed form.Comment: 28 pages, 5 figures, to appear in SIAM Journal on Financial Mathematic

    Correlations in Free Fermionic States

    Full text link
    We study correlations in a bipartite, Fermionic, free state in terms of perturbations induced by one party on the other. In particular, we show that all so conditioned free states can be modelled by an auxiliary Fermionic system and a suitable completely positive map.Comment: 17 pages, no figure

    Intermediate quantum maps for quantum computation

    Full text link
    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production, and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically, and yields pseudorandom operators with original properties, enabling for example to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.Comment: 4 pages, 4 figures, research done at http://www.quantware.ups-tlse.fr

    Classical Concepts in Quantum Programming

    Get PDF
    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.Comment: 11 pages, 4 figures, software available from http://tph.tuwien.ac.at/~oemer/qcl.html, submitted for QS2002 proceeding

    Ground-state geometric quantum computing in superconducting systems

    Full text link
    We present a theoretical proposal for the implementation of geometric quantum computing based on a Hamiltonian which has a doubly degenerate ground state. Thus the system which is steered adiabatically, remains in the ground-state. The proposed physical implementation relies on a superconducting circuit composed of three SQUIDs and two superconducting islands with the charge states encoding the logical states. We obtain a universal set of single-qubit gates and implement a non-trivial two-qubit gate exploiting the mutual inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state quantum computing. The introduced paradigm for the implementation of geometric quantum computing is expected to be robust against environmental effects.Comment: 9 pages, 5 figures. Final version with notation and typos correcte
    corecore