1 research outputs found

    Dark stars: gravitational and electromagnetic observables

    Get PDF
    Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter (CCDM) paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead to formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties, and comparing them with baryonic neutron stars. We also show that these dark objects admit the II-Love-QQ universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable in potential events of gravitational interferometers.Comment: 14 pages, 7 figure
    corecore