48,197 research outputs found
(2317) meson production at RHIC
Production of (2317) mesons in relativistic heavy ion collisions at
RHIC is studied. Using the quark coalescence model, we first determine the
initial number of (2317) mesons produced during hadronization of
created quark-gluon plasma. The predicted (2317) abundance depends
sensitively on the quark structure of the (2317) meson. An
order-of-magnitude larger yield is obtained for a conventional two-quark than
for an exotic four-quark (2317) meson. To include the hadronic effect
on the (2317) meson yield, we have evaluated the absorption cross
sections of the (2317) meson by pion, rho, anti-kaon, and vector
anti-kaon in a phenomenological hadronic model. Taking into consideration the
absorption and production of (2317) mesons during the hadronic stage of
heavy ion collisions via a kinetic model, we find that the final yield of
(2317) mesons remains sensitive to its initial number produced from the
quark-gluon plasma, providing thus the possibility of studying the quark
structure of the (2317) meson and its production mechanism in
relativistic heavy ion collisions.Comment: 12 pages, 6 figure
Quantum parallelism of the controlled-NOT operation: an experimental criterion for the evaluation of device performance
It is shown that a quantum controlled-NOT gate simultaneously performs the
logical functions of three distinct conditional local operations. Each of these
local operations can be verified by measuring a corresponding truth table of
four local inputs and four local outputs. The quantum parallelism of the gate
can then be observed directly in a set of three simple experimental tests, each
of which has a clear intuitive interpretation in terms of classical logical
operations. Specifically, quantum parallelism is achieved if the average
fidelity of the three classical operations exceeds 2/3. It is thus possible to
evaluate the essential quantum parallelism of an experimental controlled-NOT
gate by testing only three characteristic classical operations performed by the
gate.Comment: 6 pages, no figures, added references and discussio
Dynamical Entanglement in Particle Scattering
This paper explores the connections between particle scattering and quantum
information theory in the context of the non-relativistic, elastic scattering
of two spin-1/2 particles. An untangled, pure, two-particle in-state is evolved
by an S-matrix that respects certain symmetries and the entanglement of the
pure out-state is measured. The analysis is phrased in terms of unitary,
irreducible representations (UIRs) of the symmetry group in question, either
the rotation group for the spin degrees of freedom or the Galilean group for
non-relativistic particles. Entanglement may occurs when multiple UIRs appear
in the direct sum decomposition of the direct product in-state, but it also
depends of the scattering phase shifts. \keywords{dynamical entanglement,
scattering, Clebsch-Gordan methods}Comment: 6 pages, submitted to Int. J. Mod. Phys. A as part of MRST 2005
conference proceeding
Characterizing Behavioural Congruences for Petri Nets
We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding four notions of bisimulation, viz., weak and weak step bisimulation and their maximal versions. We characterize such congruences via universal contexts and via games, providing in such a way an understanding of their discerning powers
Quantum states far from the energy eigenstates of any local Hamiltonian
What quantum states are possible energy eigenstates of a many-body
Hamiltonian? Suppose the Hamiltonian is non-trivial, i.e., not a multiple of
the identity, and L-local, in the sense of containing interaction terms
involving at most L bodies, for some fixed L. We construct quantum states \psi
which are ``far away'' from all the eigenstates E of any non-trivial L-local
Hamiltonian, in the sense that |\psi-E| is greater than some constant lower
bound, independent of the form of the Hamiltonian.Comment: 4 page
Entanglement Sudden Death as an Indicator of Fidelity in a Four-Qubit Cluster State
I explore the entanglement evolution of a four qubit cluster state in a
dephasing environment concentrating on the phenomenon of entanglement sudden
death (ESD). Specifically, I ask whether the onset of ESD has an effect on the
utilization of this cluster state as a means of implementing a single qubit
rotation in the measurement based cluster state model of quantum computation.
To do this I compare the evolution of the entanglement to the fidelity, a
measure of how accurately the desired state (after the measurement based
operations) is achieved. I find that ESD does not cause a change of behavior or
discontinuity in the fidelity but may indicate when the fidelity of certain
states goes to .5.Comment: 8 pages, 9 figure
Correcting low-frequency noise with continuous measurement
Low-frequency noise presents a serious source of decoherence in solid-state
qubits. When combined with a continuous weak measurement of the eigenstates,
the low-frequency noise induces a second-order relaxation between the qubit
states. Here we show that the relaxation provides a unique approach to
calibrate the low-frequency noise in the time-domain. By encoding one qubit
with two physical qubits that are alternatively calibrated, quantum logic gates
with high fidelity can be performed.Comment: 10 pages, 3 figures, submitte
Entanglement Detection Using Majorization Uncertainty Bounds
Entanglement detection criteria are developed within the framework of the
majorization formulation of uncertainty. The primary results are two theorems
asserting linear and nonlinear separability criteria based on majorization
relations, the violation of which would imply entanglement. Corollaries to
these theorems yield infinite sets of scalar entanglement detection criteria
based on quasi-entropic measures of disorder. Examples are analyzed to probe
the efficacy of the derived criteria in detecting the entanglement of bipartite
Werner states. Characteristics of the majorization relation as a comparator of
disorder uniquely suited to information-theoretical applications are emphasized
throughout.Comment: 10 pages, 1 figur
Quantum state reconstruction with imperfect rotations on an inhomogeneously broadened ensemble of qubits
We present a method for performing quantum state reconstruction on qubits and
qubit registers in the presence of decoherence and inhomogeneous broadening.
The method assumes only rudimentary single qubit rotations as well as knowledge
of decoherence and loss mechanisms. We show that full state reconstruction is
possible even in the case where single qubit rotations may only be performed
imperfectly. Furthermore we show that for ensemble quantum computing proposals,
quantum state reconstruction is possible even if the ensemble experiences
inhomogeneous broadening and if only imperfect qubit manipulations are
available during state preparation and reconstruction.Comment: 6 pages, 5 figure
- …