32,316 research outputs found

    Quantum parallelism of the controlled-NOT operation: an experimental criterion for the evaluation of device performance

    Get PDF
    It is shown that a quantum controlled-NOT gate simultaneously performs the logical functions of three distinct conditional local operations. Each of these local operations can be verified by measuring a corresponding truth table of four local inputs and four local outputs. The quantum parallelism of the gate can then be observed directly in a set of three simple experimental tests, each of which has a clear intuitive interpretation in terms of classical logical operations. Specifically, quantum parallelism is achieved if the average fidelity of the three classical operations exceeds 2/3. It is thus possible to evaluate the essential quantum parallelism of an experimental controlled-NOT gate by testing only three characteristic classical operations performed by the gate.Comment: 6 pages, no figures, added references and discussio

    Calculation of laminar boundary layer-shock wave interaction on cooled walls by the method of integral relations

    Get PDF
    Calculation of laminar boundary layer shock wave interaction on cooled walls by method of integral relatio

    Extreme AO Observations of Two Triple Asteroid Systems with SPHERE

    Full text link
    We present the discovery of a new satellite of asteroid (130) Elektra - S/2014 (130) 1 - in differential imaging and in integral field spectroscopy data over multiple epochs obtained with SPHERE/VLT. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.Comment: 8 pages, 4 figures, 1 table, accepted to be published in the Astrophysical Journal Letter

    F(750), We Miss You as a Bound State of 6 Top and 6 Antitop Quarks, Multiple Point Principle

    Full text link
    We review our speculation, that in the pure Standard Model the exchange of Higgses, including also the ones "eaten by W±W^{\pm} and Z", and of gluons together make a bound state of 6 top plus 6 anti top quarks bind so strongly that its mass gets down to about 1/3 of the mass of the collective mass 12 mtm_t of the 12 constituent quarks. The true importance of this speculated bound state is that it makes it possible to uphold, even inside the Standard Mode, our proposal for what is really a new law of nature saying that there are several phases of empty space, vacua, all having very small energy densities (of the order of the present energy density in the universe). The reason suggested for believing in this new law called the "Multiple (Criticality) Point Principle" is, that estimating the mass of the speculated bound state using the "Multiple Point Principle" leads to two consistent mass-values; and they even agree with a crude bag-model like estimate of the mass of this bound state. Very, unfortunately, the statistical fluctuation so popular last year, when interpreted as the digamma resonance F(750), turned out not to be a real resonance, because our estimated bound state mass is just around the mass of 750 GeV.Comment: 25 pages, 11 figures, Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity", 31 August - 23 September, 2016, Corfu, Greec

    Entanglement versus Quantum Discord in Two Coupled Double Quantum Dots

    Full text link
    We study the dynamics of quantum correlations of two coupled double quantum dots containing two excess electrons. The dissipation is included through the contact with an oscillator bath. We solve the Redfield master equation in order to determine the dynamics of the quantum discord and the entanglement of formation. Based on our results, we find that the quantum discord is more resistant to dissipation than the entanglement of formation for such a system. We observe that this characteristic is related to whether the oscillator bath is common to both qubits or not and to the form of the interaction Hamiltonian. Moreover, our results show that the quantum discord might be finite even for higher temperatures in the asymptotic limit.Comment: 14 pages, 8 figures (new version is the final version to appear in NJP

    Domain-wall fermions with U(1)U(1) dynamical gauge fields

    Get PDF
    We have carried out a numerical simulation of a domain-wall model in (2+1)(2+1)-dimensions, in the presence of a dynamical gauge field only in an extra dimension, corresponding to the weak coupling limit of a ( 2-dimensional ) physical gauge coupling. Using a quenched approximation we have investigated this model at βs(=1/gs2)=\beta_{s} ( = 1 / g^{2}_{s} ) = 0.5 ( ``symmetric'' phase), 1.0, and 5.0 (``broken'' phase), where gsg_s is the gauge coupling constant of the extra dimension. We have found that there exists a critical value of a domain-wall mass m0cm_{0}^{c} which separates a region with a fermionic zero mode on the domain-wall from the one without it, in both symmetric and broken phases. This result suggests that the domain-wall method may work for the construction of lattice chiral gauge theories.Comment: 27 pages (11 figures), latex (epsf style-file needed

    A study of the KNKN-KNK^*N coupled systems

    Full text link
    We study the strangeness +1+1 meson-baryon systems to obtain improved KNKN and KNK^*N amplitudes and to look for a possible resonance formation by the KNKN-KNK^*N coupled interaction. We obtain amplitudes for light vector meson-baryon systems by implementing the ss-, tt-, uu- channel diagrams and a contact interaction. The pseudoscalar meson-baryon interactions are obtained by relying on the Weinberg-Tomozawa theorem. The transition amplitudes between the systems consisting of pseudoscalars and vector mesons are calculated by extending the Kroll-Ruderman term for pion photoproduction replacing the photon by a vector meson. We fix the subtraction constants required to calculate the loops by fitting our KNKN amplitudes to the data available for the isospin 0 and 1 ss-wave phase shifts. We provide the scattering lengths and the total cross sections for the KNKN and KNK^* N systems obtained in our model, which can be useful in future in-medium calculations. Our amplitudes do not correspond to formation of any resonance in none of the isospin and spin configurations.Comment: Published version, sent to avoid confusions recently noticed by author

    Revivals of Coherence in Chaotic Atom-Optics Billiards

    Full text link
    We investigate the coherence properties of thermal atoms confined in optical dipole traps where the underlying classical dynamics is chaotic. A perturbative expression derived for the coherence of the echo scheme of [Andersen et. al., Phys. Rev. Lett. 90, 023001 (2003)] shows it is a function of the survival probability or fidelity of eigenstates of the motion of the atoms in the trap. The echo coherence and the survival probability display "system specific" features, even when the underlying classical dynamics is chaotic. In particular, partial revivals in the echo signal and the survival probability are found for a small shift of the potential. Next, a "semi-classical" expression for the averaged echo signal is presented and used to calculate the echo signal for atoms in a light sheet wedge billiard. Revivals in the echo coherence are found in this system, indicating they may be a generic feature of dipole traps
    corecore