6,843 research outputs found

    The Origin of Mass

    Full text link
    The quark-lepton mass problem and the ideas of mass protection are reviewed. The hierarchy problem and suggestions for its resolution, including Little Higgs models, are discussed. The Multiple Point Principle is introduced and used within the Standard Model to predict the top quark and Higgs particle masses. Mass matrix ans\"{a}tze are considered; in particular we discuss the lightest family mass generation model, in which all the quark mixing angles are successfully expressed in terms of simple expressions involving quark mass ratios. It is argued that an underlying chiral flavour symmetry is responsible for the hierarchical texture of the fermion mass matrices. The phenomenology of neutrino mass matrices is briefly discussed.Comment: 33 pages, 7 figures, to be published in the Proceedings of the XXXI ITEP Winter School, Moscow, Russia, 18 - 26 February 200

    Submission in Response to the Australian Productivity Commission's Inquiry into IP Arrangements Draft Report

    Full text link
    This Submission by nine intellectual property academics responds to the Draft Report in the Inquiry into IP Arrangements published by the Australian Productivity Commission on 29 April 2016 ('Draft Report'). In broad terms, the submission supports many of the goals of, and recommendations of, the Productivity Commission expressed in the Draft Report, but expresses concerns that some recommendations may not achieve the overall goals of the Commission, or reflect misunderstandings of the statutory framework. The submission addresses many of the Commission's draft recommendations concerning copyright, patents, trade marks and geographical indicators, IP and public institutions, and IP's institutional and governance arrangements

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Adding control to arbitrary unknown quantum operations

    Get PDF
    While quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. We demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.Comment: 9 pages, 8 figure

    Death, dying and informatics: misrepresenting religion on MedLine

    Get PDF
    BACKGROUND: The globalization of medical science carries for doctors worldwide a correlative duty to deepen their understanding of patients' cultural contexts and religious backgrounds, in order to satisfy each as a unique individual. To become better informed, practitioners may turn to MedLine, but it is unclear whether the information found there is an accurate representation of culture and religion. To test MedLine's representation of this field, we chose the topic of death and dying in the three major monotheistic religions. METHODS: We searched MedLine using PubMed in order to retrieve and thematically analyze full-length scholarly journal papers or case reports dealing with religious traditions and end-of-life care. Our search consisted of a string of words that included the most common denominations of the three religions, the standard heading terms used by the National Reference Center for Bioethics Literature (NRCBL), and the Medical Subject Headings (MeSH) used by the National Library of Medicine. Eligible articles were limited to English-language papers with an abstract. RESULTS: We found that while a bibliographic search in MedLine on this topic produced instant results and some valuable literature, the aggregate reflected a selection bias. American writers were over-represented given the global prevalence of these religious traditions. Denominationally affiliated authors predominated in representing the Christian traditions. The Islamic tradition was under-represented. CONCLUSION: MedLine's capability to identify the most current, reliable and accurate information about purely scientific topics should not be assumed to be the same case when considering the interface of religion, culture and end-of-life care

    Measuring measurement

    Full text link
    Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e. tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography: we identify the optimal positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process, and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon number resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at http://www.quantiki.org/video_abstracts/0807244

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing
    • …
    corecore