16 research outputs found

    Skill forecasting from ensemble predictions of wind power

    Get PDF
    International audienceOptimal management and trading of wind generation calls for the providing of uncertainty estimates along with the commonly provided short-term wind power point predictions. Alternative approaches for the use of probabilistic forecasting are introduced. More precisely, focus is given to prediction risk indices aiming to give a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the spread of ensemble forecasts (i.e. a set of alternative scenarios for the coming period) for a single prediction horizon or over a look-ahead period. It is shown on the test case of a Danish offshore wind farm how these prediction risk indices may be related to several levels of forecast uncertainty (and potential energy imbalances). Wind power ensemble predictions are derived from the conversion of ECMWF and NCEP ensemble forecasts of meteorological variables to wind power ensemble forecasts, as well as by a lagged average approach alternative. The ability of prediction risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed

    Local linear regression with adaptive orthogonal fitting for the wind power application

    Get PDF
    Short-term forecasting of wind generation requires a model of the function for the conversion of me-teorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric ap-proach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assump-tion is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive es-timation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covari-ance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomia

    Prediction of regional wind power (poster)

    No full text

    Temperature prediction at critical points in district heating systems

    No full text
    Current methodologies for the optimal operation of district heating systems use model predictive control. Accurate forecasting of the water temperature at critical points is crucial for meeting constraints related to consumers while minimizing the production costs for the heat supplier. A new forecasting methodology based on conditional finite impulse response (cFIR) models is introduced, for which model coefficients are replaced by coefficient functions of the water flux at the supply point and of the time of day, allowing for nonlinear variations of the time delays. Appropriate estimation methods for both are described. Results are given for the test case of the Roskilde district heating system over a period of more than 6 years. The advantages of the proposed forecasting methodology in terms of a higher forecast accuracy, its use for simulation purposes, or alternatively for better understanding transfer functions of district heating systems, are clearly shown.Forecasting Time series Finite impulse response Nonlinear time delay District heating systems

    Skill forecasting from ensemble predictions of wind power

    No full text
    Optimal management and trading of wind generation calls for the providing of uncertainty estimates along with the commonly provided short-term wind power point predictions. Alternative approaches for the use of probabilistic forecasting are introduced. More precisely, focus is given to prediction risk indices aiming to give a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the spread of ensemble forecasts (i.e. a set of alternative scenarios for the coming period) for a single prediction horizon or over a look-ahead period. It is shown on the test case of a Danish offshore wind farm how these prediction risk indices may be related to several levels of forecast uncertainty (and potential energy imbalances). Wind power ensemble predictions are derived from the conversion of ECMWF and NCEP ensemble forecasts of meteorological variables to wind power ensemble forecasts, as well as by a lagged average approach alternative. The ability of prediction risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed.Wind power Forecasting Uncertainty Skill forecasting Prediction risk indices Ensemble forecasting
    corecore