7,878 research outputs found
Cramer-Rao Lower Bound and Information Geometry
This article focuses on an important piece of work of the world renowned
Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years
old then) published a pathbreaking paper, which had a profound impact on
subsequent statistical research.Comment: To appear in Connected at Infinity II: On the work of Indian
mathematicians (R. Bhatia and C.S. Rajan, Eds.), special volume of Texts and
Readings In Mathematics (TRIM), Hindustan Book Agency, 201
Guaranteed bounds on the Kullback-Leibler divergence of univariate mixtures using piecewise log-sum-exp inequalities
Information-theoretic measures such as the entropy, cross-entropy and the
Kullback-Leibler divergence between two mixture models is a core primitive in
many signal processing tasks. Since the Kullback-Leibler divergence of mixtures
provably does not admit a closed-form formula, it is in practice either
estimated using costly Monte-Carlo stochastic integration, approximated, or
bounded using various techniques. We present a fast and generic method that
builds algorithmically closed-form lower and upper bounds on the entropy, the
cross-entropy and the Kullback-Leibler divergence of mixtures. We illustrate
the versatile method by reporting on our experiments for approximating the
Kullback-Leibler divergence between univariate exponential mixtures, Gaussian
mixtures, Rayleigh mixtures, and Gamma mixtures.Comment: 20 pages, 3 figure
Optimal interval clustering: Application to Bregman clustering and statistical mixture learning
We present a generic dynamic programming method to compute the optimal
clustering of scalar elements into pairwise disjoint intervals. This
case includes 1D Euclidean -means, -medoids, -medians, -centers,
etc. We extend the method to incorporate cluster size constraints and show how
to choose the appropriate by model selection. Finally, we illustrate and
refine the method on two case studies: Bregman clustering and statistical
mixture learning maximizing the complete likelihood.Comment: 10 pages, 3 figure
- …
