6 research outputs found

    Precision orthotics: optimising ankle foot orthoses to improve gait in patients with neuromuscular diseases; protocol of the PROOF-AFO study, a prospective intervention study

    No full text
    In patients with neuromuscular disorders and subsequent calf muscle weakness, metabolic walking energy cost (EC) is nearly always increased, which may restrict walking activity in daily life. To reduce walking EC, a spring-like ankle-foot-orthosis (AFO) can be prescribed. However, the reduction in EC that can be obtained from these AFOs is stiffness dependent, and it is unknown which AFO stiffness would optimally support calf muscle weakness. The PROOF-AFO study aims to determine the effectiveness of stiffness-optimised AFOs on reducing walking EC, and improving gait biomechanics and walking speed in patients with calf muscle weakness, compared to standard, non-optimised AFOs. A second aim is to build a model to predict optimal AFO stiffness. A prospective intervention study will be conducted. In total, 37 patients with calf muscle weakness who already use an AFO will be recruited. At study entry, participants will receive a new custom-made spring-like AFO of which the stiffness can be varied. For each patient, walking EC (primary outcome), gait biomechanics and walking speed (secondary outcomes) will be assessed for five stiffness configurations and the patient's own (standard) AFO. On the basis of walking EC and gait biomechanics outcomes, the optimal AFO stiffness will be determined. After wearing this optimal AFO for 3 months, walking EC, gait biomechanics and walking speed will be assessed again and compared to the standard AFO. The Medical Ethics Committee of the Academic Medical Centre in Amsterdam has approved the study protocol. The study is registered at the Dutch trial register (NTR 5170). The PROOF-AFO study is the first to compare stiffness-optimised AFOs with usual care AFOs in patients with calf muscle weakness. The results will also provide insight into factors that influence optimal AFO stiffness in these patients. The results are necessary for improving orthotic treatment and will be disseminated through international peer-reviewed journals and scientific conference

    Description of orthotic properties and effect evaluation of ankle-foot orthoses in non-spastic calf muscle weakness

    No full text
    OBJECTIVE: To describe the orthotic properties and evaluate the effects of ankle-foot orthoses for calf muscle weakness in persons with non-spastic neuromuscular disorders compared with shoes-only. DESIGN: Cross-sectional study. SUBJECTS: Thirty-four persons who used ankle-foot orthoses for non-spastic calf muscle weakness. METHODS: The following orthotic properties were measured: ankle-foot orthosis type, mass, and ankle and footplate stiffness. For walking with shoes-only and with the ankle-foot orthoses, walking speed, energy cost and gait biomechanics were assessed. RESULTS: Four types of ankle-foot orthosis were identified: shaft-reinforced orthopaedic shoes (n = 6), ventral ankle-foot orthoses (n = 10), dorsal leaf ankle-foot orthoses (n = 12) and dorsiflexion-stop ankle-foot orthoses (n = 6). These types differed significantly with regards to mass, ankle-and footplate stiffness. Compared with shoes-only, all ankle-foot orthoses/orthopaedic shoes groups combined increased walking speed by 0.18 m/s (95% confidence interval (95% CI) 0.13-0.23), reduced energy cost by 0.70 J/kg/m (95% CI 0.48-0.94) and limited ankle dorsiflexion by -3.0° (95% CI 1.3-4.7). Higher ankle-foot orthoses ankle stiffness correlated with greater reductions in walking energy cost and maximal ankle dorsiflexion angle. CONCLUSION: Ankle-foot orthoses for persons with non-spastic calf muscle weakness vary greatly in properties and effects on gait. The large variation in effectiveness may be due to differences in ankle stiffness, although this requires further prospective evaluation

    Compensations in lower limb joint work during walking in response to unilateral calf muscle weakness

    No full text
    Background: Patients with calf muscle weakness due to neuromuscular disorders have a reduced ankle push-off work, which leads to increased energy dissipation at contralateral heel-strike. Consequently, compensatory positive work needs to be generated, which is mechanically less efficient. It is unknown whether neuromuscular disorder patients compensate with their ipsilateral hip and/or contralateral leg; and if such compensatory joint work is related to walking energy cost. Research question: Do patients with calf muscle weakness compensate for the increase in negative joint work by increasing positive ipsilateral hip work and/or positive contralateral leg work? And is the total mechanical work related with walking energy cost? Methods: Seventeen patients with unilateral flaccid calf muscle weakness and 10 healthy individuals performed the following two tests: i) a barefoot 3D gait analysis at comfortable speed and matched control speed (i.e. 0.4 non-dimensional) to assess lower limb joint work and ii) a 6-minute walk test at comfortable speed to assess walking energy cost. Results: Patients had a lower comfortable walking speed compared to healthy individuals (1.05 vs 1.36 m/s, p < 0.001) and did not increase positive lower limb joint work at comfortable speed. At matched speed (1.25 m/s), patients showed increased positive work at their ipsilateral hip (0.38 ± 0.08 vs 0.27 ± 0.07, p = 0.001) and/or contralateral leg (0.99 ± 0.14 vs 0.69 ± 0.14, p < 0.001). Patients with weakest plantar flexors used both strategies. No relation between total positive work and walking energy cost was found (r = 0.43, p = 0.122). Significance: Patients with unilateral calf muscle weakness compensated for reduced ankle push-off work by lowering their comfortable walking speed or, at matched speed, by generating additional positive joint work at the ipsilateral hip and/or contralateral leg. The additional positive joint work at matched speed did not explain the elevated walking energy cost at comfortable speed, which needs further exploration

    Stiffness modification of two ankle-foot orthosis types to optimize gait in individuals with non-spastic calf muscle weakness - a proof-of-concept study

    No full text
    Background: To reduce gait problems in individuals with non-spastic calf muscle weakness, spring-like ankle-foot orthoses (AFOs) are often applied, but they are not individually optimized to treatment outcome. The aim of this proof-of-concept study was to evaluate the effects of modifying the stiffness for two spring-like AFO types with shoes-only as reference on gait outcomes in three individuals with calf muscle weakness due to polio. Methods: We assessed 3D gait biomechanics, walking speed and walking energy cost for shoes-only and five stiffness conditions of a dorsal-leaf-spring AFO and a spring-hinged AFO. Outcomes were compared between stiffness conditions in the two AFOs and three subjects. Results: Maximum ankle dorsiflexion angle decreased with increasing stiffness in both AFOs (up to 6-8°) and all subjects. Maximum knee extension angle changed little between stiffness conditions, however different responses between the AFOs and subjects were observed compared to shoes-only. Walking speed remained unchanged across conditions. For walking energy cost, we found fairly large differences across stiffness conditions with both AFOs and between subjects (range 3-15%). Conclusions: Modifying AFO stiffness in individuals with non-spastic calf muscle weakness resulted in substantial differences in ankle biomechanics and walking energy cost with no effect on speed. Our results provide proof-of-concept that individually optimizing AFO stiffness can clinically beneficially improve gait performance

    Comments on Harkness-Armstrong et al. (2021) ‘In vivo operating lengths of the gastrocnemius muscle during gait in children who idiopathically toe-walk’

    No full text
    Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro
    corecore