1,366 research outputs found

    Scale properties in data envelopment analysis

    Get PDF
    Recently there has been some discussion in the literature concerning the nature of scale properties in the Data Envelopment Model (DEA). It has been argued that DEA may not be able to provide reliable estimates of the optimal scale size. We argue in this paper that DEA is well suited to estimate optimal scale size, if DEA is augmented with two additional maintained hypotheses which imply that the DEA-frontier is consistent with smooth curves along rays in input and in output space that obey the Regular Ultra Passum (RUP) law (Frisch 1965). A necessary condition for a smooth curve passing through all vertices to obey the RUP-law is presented. If this condition is satisfied then upper and lower bounds for the marginal product at each vertex are presented. It is shown that any set of feasible marginal products will correspond to a smooth curve passing through all points with a monotonic decreasing scale elasticity. The proof is constructive in the sense that an estimator of the curve is provided with the desired properties. A typical DEA based return to scale analysis simply reports whether or not a DMU is at the optimal scale based on point estimates of scale efficiency. A contribution of this paper is that we provide a method which allows us to determine in what interval optimal scale is located.DEA; efficiency

    Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury

    Get PDF
    Early mobilization is of importance for improving long-term outcome for patients after severe acquired brain injury. A limiting factor for early mobilization by head-up tilt is orthostatic intolerance. The purpose of the present study was to examine cerebral autoregulation in patients with severe acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate and RR-intervals were determined by electrocardiography, middle cerebral artery velocity was evaluated by transcranial Doppler, and near-infrared spectroscopy determined frontal lobe oxygenation in the supine position and during head-up tilt. Cerebral autoregulation was evaluated as the mean flow index calculated as the ratio between middle cerebral artery mean velocity and estimated cerebral perfusion pressure. Patients with acquired brain injury presented an increase in mean flow index during head-up tilt indicating impaired autoregulation (P < 0.001). Spectral analysis of heart rate variability in the frequency domain revealed lower magnitudes of ~0.1 Hz spectral power in patients compared to healthy controls suggesting baroreflex dysfunction. In conclusion, patients with severe acquired brain injury and orthostatic intolerance during head-up tilt have impaired cerebral autoregulation more than one month after brain injury

    RootPainter: Deep Learning Segmentation of Biological Images with Corrective Annotation

    Get PDF
    We present RootPainter, a GUI-based software tool for the rapid training of deep neural networks for use in biological image analysis. RootPainter facilitates both fully-automatic and semiautomatic image segmentation. We investigate the effectiveness of RootPainter using three plant image datasets, evaluating its potential for root length extraction from chicory roots in soil, biopore counting and root nodule counting from scanned roots. We also use RootPainter to compare dense annotations to corrective ones which are added during the training based on the weaknesses of the current model

    Real-time high-resolution mid-infrared optical coherence tomography

    Get PDF
    The potential for improving the penetration depth of optical coherence tomography systems by using light sources with longer wavelengths has been known since the inception of the technique in the early 1990s. Nevertheless, the development of mid-infrared optical coherence tomography has long been challenged by the maturity and fidelity of optical components in this spectral region, resulting in slow acquisition, low sensitivity, and poor axial resolution. In this work, a mid-infrared spectral-domain optical coherence tomography system operating at a central wavelength of 4?µm and an axial resolution of 8.6?µm is demonstrated. The system produces two-dimensional cross-sectional images in real time enabled by a high-brightness 0.9- to 4.7-µm mid-infrared supercontinuum source with a pulse repetition rate of 1?MHz for illumination and broadband upconversion of more than 1-µm bandwidth from 3.58–4.63?µm to 820–865?nm, where a standard 800-nm spectrometer can be used for fast detection. The images produced by the mid-infrared system are compared with those delivered by a state-of-the-art ultra-high-resolution near-infrared optical coherence tomography system operating at 1.3??m, and the potential applications and samples suited for this technology are discussed. In doing so, the first practical mid-infrared optical coherence tomography system is demonstrated, with immediate applications in real-time non-destructive testing for the inspection of defects and thickness measurements in samples that exhibit strong scattering at shorter wavelengths
    corecore