28 research outputs found

    Navigation in the Ancient Mediterranean and Beyond

    Full text link
    This lesson unit has been developed within the framework the EU Space Awareness project. It provides an insight into the history and navigational methods of the Bronze Age Mediterranean peoples. The students explore the link between exciting history and astronomical knowledge. Besides an overview of ancient seafaring in the Mediterranean, the students explore in two hands-on activities early navigational skills using the stars and constellations and their apparent nightly movement across the sky. In the course of the activities, they become familiar with the stellar constellations and how they are distributed across the northern and southern sky.Comment: 11 pages, 18 figures. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. Published by AstroEDU: http://astroedu.iau.org/en/activities/1645/navigation-in-the-ancient-mediterranean-and-beyond

    How the Vikings Navigated With the Sun

    Full text link
    The students are introduced to navigation in general, and, in particular, the skills the medieval people of the Vikings used to navigate on the open sea. The topics of navigation and the Vikings are introduced by questions and a short story. A hands-on activity illustrates to the students how the navigational tool of the shadow board might have helped the Vikings to determine the cardinal directions and to sail along latitude. A miniature version of a shadow board simulates how the shadow cast by the Sun was probably used for this. Finally, a simple math activity for more experience students demonstrates the geometry that is involved in that technique.Comment: 11 pages, 23 figures. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED

    Navigating with the Kamal

    Full text link
    The students build and use an old navigational tool from the Arab world of the 9th century, the kamal. After an introduction to historic seafaring and navigation, they build this simple tool and understand how it can be used to measure angles. After learning that the elevation of Polaris is (almost) identical to the latitude of the observer, they apply this knowledge while using the kamal. During a field trip, they actually measure the elevation of Polaris. The result is compared with modern methods.Comment: 8 pages, 12 figures. Accepted for publication at AstroEDU. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. arXiv admin note: substantial text overlap with arXiv:1708.07700, arXif:1708.08777, arXiv:1708.0833

    A View From Above

    Full text link
    This activity has been developed as a resource for the "EU Space Awareness" educational programme. As part of the suite "Our Fragile Planet" together with the "Climate Box" it addresses aspects of weather phenomena, the Earth's climate and climate change as well as Earth observation efforts like in the European "Copernicus" programme. In this activity, students investigate how satellite images obtained at different wavelengths help to identify Earth surface features like vegetation and open water areas by using a specially designed software package, LEO Works. Students inspect and analyse real satellite data to produce colour images and maps of spectral indices and learn how to interpret them and their uses.Comment: 13 pages, 21 figures. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED

    The Intertropical Convergence Zone

    Full text link
    This activity has been developed as a resource for the "EU Space Awareness" educational programme. As part of the suite "Our Fragile Planet" together with the "Climate Box" it addresses aspects of weather phenomena, the Earth's climate and climate change as well as Earth observation efforts like in the European "Copernicus" programme. This resource consists of three parts that illustrate the power of the Sun driving a global air circulation system that is also responsible for tropical and subtropical climate zones. Through experiments, students learn how heated air rises above cool air and how a continuous heat source produces air convection streams that can even drive a propeller. Students then apply what they have learnt to complete a worksheet that presents the big picture of the global air circulation system of the equator region by transferring the knowledge from the previous activities in to a larger scale.Comment: 8 pages, 14 figures. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED

    The Engine of Life

    Full text link
    This activity has been developed as a resource for the "EU Space Awareness" educational programme. As part of the suite "Our Fragile Planet" together with the "Climate Box" it addresses aspects of weather phenomena, the Earth's climate and climate change as well as Earth observation efforts like in the European "Copernicus" programme. This activity uses a simple analogue for the power of radiation received at a given distance from a star. A photovoltaic cell is connected to an electric motor. Depending on the power received on the cell, the motor begins to move. It changes also its speed with respect to the distance between the cell and the lamp. This can be interpreted as a model for a planetary system and its habitable zone. The "engine of life" moves as soon as the receiving power is big enough to sustain its operation. The distance, where the motor stops, can be interpreted as the outer edge of the habitable zone. As a second activity, the students will reconstruct the orbits of a real exoplanetary system by drawing a scaled model. In addition, they will calculate and superimpose a realistic circumstellar habitable zone and discuss its elements.Comment: 8 pages, 12 figures. This resource was developed in the framework of Space Awareness. Space Awareness is funded by the European Commission's Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED

    Wie brachte die Saturn V-Rakete die Astronauten von Apollo 11 zum Mond?

    Full text link
    This activity was created within the framework of the "Space for Education" project, which ams at experiencing physical principles on the basis of topics related to space travel. This teaching unit follows the material "How do astronauts fly to the ISS with a rocket?", but is aimed at higher grades because of the mathematical skills required. Based on the rocket equation, the students calculate various parameters of the three-stage moon rocket Saturn V under the influence of gravity. In order to be able to perform the calculation analytically, some simplifying assumptions are made. For motivation videos and texts about the Apollo program are provided. Additional materials at: https://www.haus-der-astronomie.de/raum-fuer-bildung ----- Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt, welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Diese Lehreinheit schlie{\ss}t sich an das Material "Wie fliegen Astronauten mit einer Rakete zur ISS?" an, richtet sich aber wegen des ben\"otigten mathematischen R\"ustzeugs an h\"ohere Klassenstufen. Die Sch\"ulerinnen und Sch\"uler berechnen ausgehend von der Raketengleichung verschiedene Parameter der dreistufigen Mondrakete Saturn V unter dem Einfluss der Schwerkraft. Um die Berechnung analytisch durchf\"uhren zu k\"onnen, werden einige vereinfachende Annahmen gemacht. Zur Motivation werden Videos und Texte zum Apollo-Programm zur Verf\"ugung gestellt. Weitere Materialien unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 23 pages, in German, work materials for students at: https://www.haus-der-astronomie.de/raum-fuer-bildun

    Wie fliegen Astronauten mit einer Rakete zur ISS?

    Full text link
    This activity was created within the framework of the "Space for Education" project, which aims at experiencing physical principles on the basis of topics related to space travel. This work enables the students to understand how a rocket brings crews into the orbit of the International Space Station. Since the way from the simpler basics to a real representation of a rocket flight is quite complex and requires knowledge from several class levels, the current paper limits itself to the introduction of basic concepts and simple, idealized applications. The rocket equation is of central importance. Further derivations, which deal with multi-stage rockets, are dealt with in a separate work. To introduce the principle of recoil, a few examples are briefly presented. Additional materials at: https://www.haus-der-astronomie.de/raum-fuer-bildung ----- Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt, welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Diese Ausarbeitung erm\"oglicht den Sch\"ulerinnen und Sch\"ulern nachzuempfinden, wie eine Rakete Besatzungen auf den Orbit der Internationalen Raumstation bringt. Da der Weg von den einfacheren Grundlagen hin zu einer realen Darstellung eines Raketenflugs recht komplex ist und Kenntnisse aus mehreren Klassenstufen ben\"otigt, beschr\"ankt sich die aktuelle Ausarbeitung auf die Einf\"uhrung der Grundbegriffe und einfachen, idealisierten Anwendungen. Zentrale Bedeutung hat dabei die Raketengleichung. Weiterf\"uhrende Ableitungen, die mehrstufige Raketen thematisieren, werden in einer gesonderten Ausarbeitung behandelt. Zur Einleitung in das Prinzip des R\"ucksto{\ss}es werden kurz einige Beispiele vorgestellt. Weitere Materialien unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 20 pages, in German, work materials for students at: https://www.haus-der-astronomie.de/raum-fuer-bildung. arXiv admin note: text overlap with arXiv:1912.0597

    Wo ist Apollo 11? Wie man mit Funkechos die Mondentfernung bestimmt

    Full text link
    This activity was created within the framework of the "Space for Education" project, which ams at experiencing physical principles on the basis of topics related to space travel. The students analyze audio files of the radio contact between the NASA ground station in Houston, Texas and the crew of Apollo 11 during the moon landing in 1969. Through echoes in the radio transmission they determine the signal propagation time and thus the distance between earth and moon. Additional materials at: https://www.haus-der-astronomie.de/raum-fuer-bildung ----- Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt, welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Die Sch\"ulerinnen und Sch\"uler analysieren Audiodateien des Funkkontakts zwischen der NASA- Bodenstation in Houston, Texas und der Crew von Apollo 11 wahrend der Mondlandung im Jahr 1969. Durch Echos in der Funk\"ubertragung ermitteln sie die Signallaufzeit und somit die Entfernung zwischen Erde und Mond. Weitere Materialien unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 20 pages, in German, work materials for students at: https://www.haus-der-astronomie.de/raum-fuer-bildun

    Die Stromversorgung der ISS

    Full text link
    This activity was created within the framework of the "Space for Education" project, which ams at experiencing physical principles on the basis of topics related to space travel. It enables the students to investigate the power supply of the International Space Station. If available, they determine the current parameters of the electrical system from the telemetry of the ISS in real time. Otherwise, they can use archive data attached to the working documents. From this, they calculate the electrical power provided by the solar cells. Additional materials at: https://www.haus-der-astronomie.de/raum-fuer-bildung ----- Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt, welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Sie erm\"oglicht den Sch\"ulerinnen und Sch\"ulern, die Stromversorgung der Internationalen Raumstation zu untersuchen. Falls vorhanden, ermitteln sie die augenblicklichen Parameter des elektrischen Systems aus der Telemetrie der ISS in Echtzeit. Ansonsten k\"onnen sie Archivdaten nutzen, die den Arbeitsunterlagen beigef\"ugt sind. Hieraus berechnen sie die von den Solarzellen zur Verf\"ugung gestellte elektrische Leistung. Weitere Materialien unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 14 pages, in German, work materials for students at: https://www.haus-der-astronomie.de/raum-fuer-bildun
    corecore