28 research outputs found
Navigation in the Ancient Mediterranean and Beyond
This lesson unit has been developed within the framework the EU Space
Awareness project. It provides an insight into the history and navigational
methods of the Bronze Age Mediterranean peoples. The students explore the link
between exciting history and astronomical knowledge. Besides an overview of
ancient seafaring in the Mediterranean, the students explore in two hands-on
activities early navigational skills using the stars and constellations and
their apparent nightly movement across the sky. In the course of the
activities, they become familiar with the stellar constellations and how they
are distributed across the northern and southern sky.Comment: 11 pages, 18 figures. This resource was developed in the framework of
Space Awareness. Space Awareness is funded by the European Commission's
Horizon 2020 Programme under grant agreement no. 638653. Published by
AstroEDU:
http://astroedu.iau.org/en/activities/1645/navigation-in-the-ancient-mediterranean-and-beyond
How the Vikings Navigated With the Sun
The students are introduced to navigation in general, and, in particular, the
skills the medieval people of the Vikings used to navigate on the open sea. The
topics of navigation and the Vikings are introduced by questions and a short
story. A hands-on activity illustrates to the students how the navigational
tool of the shadow board might have helped the Vikings to determine the
cardinal directions and to sail along latitude. A miniature version of a shadow
board simulates how the shadow cast by the Sun was probably used for this.
Finally, a simple math activity for more experience students demonstrates the
geometry that is involved in that technique.Comment: 11 pages, 23 figures. This resource was developed in the framework of
Space Awareness. Space Awareness is funded by the European Commission's
Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED
Navigating with the Kamal
The students build and use an old navigational tool from the Arab world of
the 9th century, the kamal. After an introduction to historic seafaring and
navigation, they build this simple tool and understand how it can be used to
measure angles. After learning that the elevation of Polaris is (almost)
identical to the latitude of the observer, they apply this knowledge while
using the kamal. During a field trip, they actually measure the elevation of
Polaris. The result is compared with modern methods.Comment: 8 pages, 12 figures. Accepted for publication at AstroEDU. This
resource was developed in the framework of Space Awareness. Space Awareness
is funded by the European Commission's Horizon 2020 Programme under grant
agreement no. 638653. arXiv admin note: substantial text overlap with
arXiv:1708.07700, arXif:1708.08777, arXiv:1708.0833
A View From Above
This activity has been developed as a resource for the "EU Space Awareness"
educational programme. As part of the suite "Our Fragile Planet" together with
the "Climate Box" it addresses aspects of weather phenomena, the Earth's
climate and climate change as well as Earth observation efforts like in the
European "Copernicus" programme. In this activity, students investigate how
satellite images obtained at different wavelengths help to identify Earth
surface features like vegetation and open water areas by using a specially
designed software package, LEO Works. Students inspect and analyse real
satellite data to produce colour images and maps of spectral indices and learn
how to interpret them and their uses.Comment: 13 pages, 21 figures. This resource was developed in the framework of
Space Awareness. Space Awareness is funded by the European Commission's
Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED
The Intertropical Convergence Zone
This activity has been developed as a resource for the "EU Space Awareness"
educational programme. As part of the suite "Our Fragile Planet" together with
the "Climate Box" it addresses aspects of weather phenomena, the Earth's
climate and climate change as well as Earth observation efforts like in the
European "Copernicus" programme. This resource consists of three parts that
illustrate the power of the Sun driving a global air circulation system that is
also responsible for tropical and subtropical climate zones. Through
experiments, students learn how heated air rises above cool air and how a
continuous heat source produces air convection streams that can even drive a
propeller. Students then apply what they have learnt to complete a worksheet
that presents the big picture of the global air circulation system of the
equator region by transferring the knowledge from the previous activities in to
a larger scale.Comment: 8 pages, 14 figures. This resource was developed in the framework of
Space Awareness. Space Awareness is funded by the European Commission's
Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED
The Engine of Life
This activity has been developed as a resource for the "EU Space Awareness"
educational programme. As part of the suite "Our Fragile Planet" together with
the "Climate Box" it addresses aspects of weather phenomena, the Earth's
climate and climate change as well as Earth observation efforts like in the
European "Copernicus" programme. This activity uses a simple analogue for the
power of radiation received at a given distance from a star. A photovoltaic
cell is connected to an electric motor. Depending on the power received on the
cell, the motor begins to move. It changes also its speed with respect to the
distance between the cell and the lamp. This can be interpreted as a model for
a planetary system and its habitable zone. The "engine of life" moves as soon
as the receiving power is big enough to sustain its operation. The distance,
where the motor stops, can be interpreted as the outer edge of the habitable
zone. As a second activity, the students will reconstruct the orbits of a real
exoplanetary system by drawing a scaled model. In addition, they will calculate
and superimpose a realistic circumstellar habitable zone and discuss its
elements.Comment: 8 pages, 12 figures. This resource was developed in the framework of
Space Awareness. Space Awareness is funded by the European Commission's
Horizon 2020 Programme under grant agreement no. 638653. Accepted by AstroED
Wie brachte die Saturn V-Rakete die Astronauten von Apollo 11 zum Mond?
This activity was created within the framework of the "Space for Education"
project, which ams at experiencing physical principles on the basis of topics
related to space travel. This teaching unit follows the material "How do
astronauts fly to the ISS with a rocket?", but is aimed at higher grades
because of the mathematical skills required. Based on the rocket equation, the
students calculate various parameters of the three-stage moon rocket Saturn V
under the influence of gravity. In order to be able to perform the calculation
analytically, some simplifying assumptions are made. For motivation videos and
texts about the Apollo program are provided. Additional materials at:
https://www.haus-der-astronomie.de/raum-fuer-bildung
-----
Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt,
welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Diese
Lehreinheit schlie{\ss}t sich an das Material "Wie fliegen Astronauten mit
einer Rakete zur ISS?" an, richtet sich aber wegen des ben\"otigten
mathematischen R\"ustzeugs an h\"ohere Klassenstufen. Die Sch\"ulerinnen und
Sch\"uler berechnen ausgehend von der Raketengleichung verschiedene Parameter
der dreistufigen Mondrakete Saturn V unter dem Einfluss der Schwerkraft. Um die
Berechnung analytisch durchf\"uhren zu k\"onnen, werden einige vereinfachende
Annahmen gemacht. Zur Motivation werden Videos und Texte zum Apollo-Programm
zur Verf\"ugung gestellt. Weitere Materialien unter:
https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 23 pages, in German, work materials for students at:
https://www.haus-der-astronomie.de/raum-fuer-bildun
Wie fliegen Astronauten mit einer Rakete zur ISS?
This activity was created within the framework of the "Space for Education"
project, which aims at experiencing physical principles on the basis of topics
related to space travel. This work enables the students to understand how a
rocket brings crews into the orbit of the International Space Station. Since
the way from the simpler basics to a real representation of a rocket flight is
quite complex and requires knowledge from several class levels, the current
paper limits itself to the introduction of basic concepts and simple, idealized
applications. The rocket equation is of central importance. Further
derivations, which deal with multi-stage rockets, are dealt with in a separate
work. To introduce the principle of recoil, a few examples are briefly
presented. Additional materials at:
https://www.haus-der-astronomie.de/raum-fuer-bildung
-----
Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt,
welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Diese
Ausarbeitung erm\"oglicht den Sch\"ulerinnen und Sch\"ulern nachzuempfinden,
wie eine Rakete Besatzungen auf den Orbit der Internationalen Raumstation
bringt. Da der Weg von den einfacheren Grundlagen hin zu einer realen
Darstellung eines Raketenflugs recht komplex ist und Kenntnisse aus mehreren
Klassenstufen ben\"otigt, beschr\"ankt sich die aktuelle Ausarbeitung auf die
Einf\"uhrung der Grundbegriffe und einfachen, idealisierten Anwendungen.
Zentrale Bedeutung hat dabei die Raketengleichung. Weiterf\"uhrende
Ableitungen, die mehrstufige Raketen thematisieren, werden in einer gesonderten
Ausarbeitung behandelt. Zur Einleitung in das Prinzip des R\"ucksto{\ss}es
werden kurz einige Beispiele vorgestellt. Weitere Materialien unter:
https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 20 pages, in German, work materials for students at:
https://www.haus-der-astronomie.de/raum-fuer-bildung. arXiv admin note: text
overlap with arXiv:1912.0597
Wo ist Apollo 11? Wie man mit Funkechos die Mondentfernung bestimmt
This activity was created within the framework of the "Space for Education"
project, which ams at experiencing physical principles on the basis of topics
related to space travel. The students analyze audio files of the radio contact
between the NASA ground station in Houston, Texas and the crew of Apollo 11
during the moon landing in 1969. Through echoes in the radio transmission they
determine the signal propagation time and thus the distance between earth and
moon. Additional materials at:
https://www.haus-der-astronomie.de/raum-fuer-bildung
-----
Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt,
welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Die
Sch\"ulerinnen und Sch\"uler analysieren Audiodateien des Funkkontakts zwischen
der NASA- Bodenstation in Houston, Texas und der Crew von Apollo 11 wahrend der
Mondlandung im Jahr 1969. Durch Echos in der Funk\"ubertragung ermitteln sie
die Signallaufzeit und somit die Entfernung zwischen Erde und Mond. Weitere
Materialien unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 20 pages, in German, work materials for students at:
https://www.haus-der-astronomie.de/raum-fuer-bildun
Die Stromversorgung der ISS
This activity was created within the framework of the "Space for Education"
project, which ams at experiencing physical principles on the basis of topics
related to space travel. It enables the students to investigate the power
supply of the International Space Station. If available, they determine the
current parameters of the electrical system from the telemetry of the ISS in
real time. Otherwise, they can use archive data attached to the working
documents. From this, they calculate the electrical power provided by the solar
cells. Additional materials at:
https://www.haus-der-astronomie.de/raum-fuer-bildung
-----
Diese Aktivit\"at wurde im Rahmen des Projekts "Raum f\"ur Bildung" erstellt,
welches physikalische Prinzipien anhand der Raumfahrt erlebbar macht. Sie
erm\"oglicht den Sch\"ulerinnen und Sch\"ulern, die Stromversorgung der
Internationalen Raumstation zu untersuchen. Falls vorhanden, ermitteln sie die
augenblicklichen Parameter des elektrischen Systems aus der Telemetrie der ISS
in Echtzeit. Ansonsten k\"onnen sie Archivdaten nutzen, die den
Arbeitsunterlagen beigef\"ugt sind. Hieraus berechnen sie die von den
Solarzellen zur Verf\"ugung gestellte elektrische Leistung. Weitere Materialien
unter: https://www.haus-der-astronomie.de/raum-fuer-bildungComment: 14 pages, in German, work materials for students at:
https://www.haus-der-astronomie.de/raum-fuer-bildun