107 research outputs found
Π€ΠΈΠ½Π°Π½ΡΡ
ΠΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π° Β«Π€ΠΈΠ½Π°Π½ΡΡΒ» ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΈΠΊΠ»Ρ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΏΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ 072 Β«Π€ΠΈΠ½Π°Π½ΡΡ, Π±Π°Π½ΠΊΠΎΠ²ΡΠΊΠΎΠ΅ Π΄Π΅Π»ΠΎ ΠΈ ΡΡΡΠ°Ρ
ΠΎΠ²Π°Π½ΠΈΠ΅Β». ΠΠ°ΡΡΠ½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π°, ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ°, Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ, ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΠ°, ΡΠΈΠ½Π°Π½ΡΠΎΠ² ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΠΉ ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ² ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π° ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π½Π°Π½ΠΈΠΉ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ². Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ² ΡΠΏΠΎΡΠΎΠ±Π΅Π½ Π΄ΠΎΡΡΠΈΡΡ ΡΡΠΏΠ΅Ρ
Π° Π² ΡΠ²ΠΎΠ΅ΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΡΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ² ΠΈ ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ°, ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΠ°, ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΈΡΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ°; Π·Π½Π°Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΡΠ°Π·Π²ΠΈΡΡΡ
ΡΡΡΠ°Π½; ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΡ Π΄Π΅Π½Π΅ΠΆΠ½ΠΎ-ΠΊΡΠ΅Π΄ΠΈΡΠ½ΠΎΠΉ ΠΈ ΡΠΈΡΠΊΠ°Π»ΡΠ½ΠΎ-Π±ΡΠ΄ΠΆΠ΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π°. Π£ΡΠΈΡΡΠ²Π°Ρ ΡΡΠΎ, ΡΡΠ΅Π±Π½ΡΠΌ ΠΏΠ»Π°Π½ΠΎΠΌ ΠΏΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ 072 Β«Π€ΠΈΠ½Π°Π½ΡΡ, Π±Π°Π½ΠΊΠΎΠ²ΡΠΊΠΎΠ΅ Π΄Π΅Π»ΠΎ ΠΈ ΡΡΡΠ°Ρ
ΠΎΠ²Π°Π½ΠΈΠ΅Β» ΠΏΡΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ Β«Π€ΠΈΠ½Π°Π½ΡΡΒ» ΠΏΡΠ΅Π΄ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊΡΡΡΠΎΠ²ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ. ΠΡΡΡΠΎΠ²Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΡΡΠ½ΠΎΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΎΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ° ΠΏΠΎ ΡΠΈΠ½Π°Π½ΡΠ°ΠΌ. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΊΡΡΡΠΎΠ²ΠΎΠΌΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΄Π΅Π½Ρ ΡΡΠΈΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π½Π°Π½ΠΈΡ ΠΏΠΎ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π΅ ΠΈ ΠΏΠΎΠ»ΡΡΠ°ΡΡ Π½Π°Π²ΡΠΊΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π΄Π»Ρ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΏΡΠΎΠ²Π΅ΡΡΠ΅Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΈΡ
Π·Π½Π°Π½ΠΈΠΉ, Π²ΡΡΠ²Π»ΡΠ΅Ρ ΡΡΠΎΠ²Π΅Π½Ρ ΠΎΠ±ΡΠ΅Π½Π°ΡΡΠ½ΠΎΠΉ ΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΡΡΠ΄Π΅Π½ΡΠ°, Π΅Π³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡΡ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρ ΠΈ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΠΎ ΡΠ΅ΠΌΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. Π’Π²ΠΎΡΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΡΡΡΠΎΠ²ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² Π½Π°Π²ΡΠΊΠΎΠ² Π½Π°ΡΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΡΡ
ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΎΠΊ. ΠΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ Π²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠ² ΡΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΡΡΠ½ΡΡ
ΡΠ°Π±ΠΎΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π² Ρ
ΠΎΠ΄Π΅ Π΄ΠΈΠΏΠ»ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
ΠΠ΅Π»ΠΎΠΊΠ°Π»ΡΠ½Π°Ρ Π·Π°Π΄Π°ΡΠ° Ρ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ Π΄Π»Ρ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°
ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ ΡΠΆΠΈΠΌΠ°ΡΡΠΈΡ
ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½Π°Ρ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎΡΡΡ Π½Π΅Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Ρ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ Π΄Π»Ρ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠ½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°
An ultra-fast TSP on a CNT heating layer for unsteady temperature and heat flux measurements in subsonic flows
In this paper, the authors demonstrate the application of a modified Ru(phen)-based temperature-sensitive paint which was originally developed for the evaluation of unsteady aero-thermodynamic phenomena in high Mach number but short duration experiments. In the present work, the modified TSP with a temperature sensitivity of up to β5.6%/K was applied in a low Mach number long-duration test case in a low-pressure environment. For the demonstration of the paintβs performance, a flat plate with a mounted cylinder was set up in the High-Speed Cascade Wind Tunnel (HGK). The test case was designed to generate vortex shedding frequencies up to 4300 Hz which were sampled using a high-speed camera at 40 kHz frame rate to resolve unsteady surface temperature fields for potential heat-transfer estimations. The experiments were carried out at reduced ambient pressure of pβ = 13.8 kPa for three inflow Mach numbers being Maβ=[0.3;0.5;0.7]. In order to enable the resolution of very low temperature fluctuations down to the noise floor of 10β5 K with high spatial and temporal resolution, the flat plate model was equipped with a sprayable carbon nanotube (CNT) heating layer. This constellation, together with the thermal sensors incorporated in the model, allowed for the calculation of a quasi-heat-transfer coefficient from the surface temperature fields. Besides the results of the experiments, the paper highlights the properties of the modified TSP as well as the methodology
Near-Wall Flow in Turbomachinery CascadesβResults of a German Collaborative Project
This article provides a summarizing account of the results obtained in the current collabora-tive work of four research institutes concerning near-wall flow in turbomachinery. Specific questions regarding the influences of boundary layer development on blades and endwalls as well as loss mech-anisms due to secondary flow are investigated. These address skewness, periodical distortion, wake interaction and heat transfer, among others. Several test rigs with modifiable configurations are used for the experimental investigations including an axial low speed compressor, an axial high-speed wind tunnel, and an axial low-speed turbine. Approved stationary and time resolving measurements techniques are applied in combination with custom hot-film sensor-arrays. The experiments are complemented by URANS simulations, and one group focusses on turbulence-resolving simulations to elucidate the specific impact of rotation. Juxtaposing and interlacing their results the four groups provide a broad picture of the underlying phenomena, ranging from compressors to turbines, from isothermal to non-adiabatic, and from incompressible to compressible flows.The investigations reported in this article were conducted within the framework of the joint research project βNear-Wall Flow in Turbomachinery Cascadesβ which was funded and supported by the Deutsche Forschungsgemeinschaft (DFG) under grant number PAK 948. The responsibility for the contents of this publication lies entirely by the authors.Peer ReviewedPostprint (published version
Epimerisation of chiral hydroxylactones by short-chain dehydrogenases/reductases accounts for sex pheromone evolution in Nasonia
Males of all species of the parasitic wasp genus Nasonia use (4R,5S)-5-hydroxy-4-decanolide (RS) as component of their sex pheromone while only N. vitripennis (Nv), employs additionally (4R,5R)-5-hydroxy-4-decanolide (RR). Three genes coding for the NAD(+)-dependent short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 are linked to the ability of Nv to produce RR. Here we show by assaying recombinant enzymes that SDRs from both Nv and N. giraulti (Ng), the latter a species with only RS in the pheromone, epimerise RS into RR and vice versa with (4R)-5-oxo-4-decanolide as an intermediate. Nv-derived SDR orthologues generally had higher epimerisation rates, which were also influenced by NAD(+) availability. Semiquantitative protein analyses of the pheromone glands by tandem mass spectrometry revealed that NV10127 as well as NV10128 and/or NV10129 were more abundant in Nv compared to Ng. We conclude that the interplay of differential expression patterns and SDR epimerisation rates on the ancestral pheromone component RS accounts for the evolution of a novel pheromone phenotype in Nv
- β¦