107 research outputs found

    Ѐинансы

    Get PDF
    Дисциплина «Ѐинансы» относится ΠΊ Ρ†ΠΈΠΊΠ»Ρƒ дисциплин ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΠΎ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ 072 «Ѐинансы, банковскоС Π΄Π΅Π»ΠΎ ΠΈ страхованиС». НаучноС ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ финансовой систСмы государства, финансовой ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ ΠΈ финансового ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°, Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ систСмы ΠΈ Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ, развития финансового Ρ€Ρ‹Π½ΠΊΠ°, финансов прСдприятий ΠΈ финансов ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ, обСспСчСниС финансовой бСзопасности государства ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ элСмСнтом становлСния ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… экономичСских Π·Π½Π°Π½ΠΈΠΉ студСнтов. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΉ спСциалист Π² области финансов способСн Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ успСха Π² своСй ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ‡Π΅Ρ‚ΠΊΠΎΠ³ΠΎ прСдставлСния сущности финансов ΠΈ ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, финансового ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°, функционирования финансового Ρ€Ρ‹Π½ΠΊΠ°, ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„ΠΈΡΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡ€ΠΎΡ‚Π°; знания основных ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² построСния финансовых систСм Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹Ρ… стран; понимания влияния Π΄Π΅Π½Π΅ΠΆΠ½ΠΎ-ΠΊΡ€Π΅Π΄ΠΈΡ‚Π½ΠΎΠΉ ΠΈ Ρ„ΠΈΡΠΊΠ°Π»ΡŒΠ½ΠΎ-Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΈ Π½Π° экономичСскоС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ государства. Учитывая это, ΡƒΡ‡Π΅Π±Π½Ρ‹ΠΌ ΠΏΠ»Π°Π½ΠΎΠΌ ΠΏΠΎ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ 072 «Ѐинансы, банковскоС Π΄Π΅Π»ΠΎ ΠΈ страхованиС» ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ дисциплины «Ѐинансы» прСдусмотрСно Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ курсовой Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠšΡƒΡ€ΡΠΎΠ²Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° являСтся Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΡ‹ исслСдования Π² процСссС ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ спСциалиста ΠΏΠΎ финансам. Благодаря курсовому ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ студСнт учится ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ тСорСтичСскиС знания ΠΏΠΎ дисциплинС ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π½Π°Π²Ρ‹ΠΊΠΈ экономичСских расчСтов для принятия управлСнчСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. ΠŸΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ провСряСт качСство этих Π·Π½Π°Π½ΠΈΠΉ, выявляСт ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΎΠ±Ρ‰Π΅Π½Π°ΡƒΡ‡Π½ΠΎΠΉ ΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ студСнта, Π΅Π³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ ΠΈ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΡŽ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ исслСдования. ВворчСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡŽ курсовой Ρ€Π°Π±ΠΎΡ‚Ρ‹ способствуСт Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Ρƒ студСнтов Π½Π°Π²Ρ‹ΠΊΠΎΠ² Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… исслСдований ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΎΠΊ. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π²Π°ΠΆΠ½ΠΎ для ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠ² студСнчСских Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использовано Π² Ρ…ΠΎΠ΄Π΅ Π΄ΠΈΠΏΠ»ΠΎΠΌΠ½ΠΎΠ³ΠΎ проСктирования

    НСлокальная Π·Π°Π΄Π°Ρ‡Π° с ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ условиями для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ уравнСния Π² частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка

    Get PDF
    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° однозначная Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ нСлокальной Π·Π°Π΄Π°Ρ‡ΠΈ с ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ условиями для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ уравнСния Π² частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка

    An ultra-fast TSP on a CNT heating layer for unsteady temperature and heat flux measurements in subsonic flows

    Get PDF
    In this paper, the authors demonstrate the application of a modified Ru(phen)-based temperature-sensitive paint which was originally developed for the evaluation of unsteady aero-thermodynamic phenomena in high Mach number but short duration experiments. In the present work, the modified TSP with a temperature sensitivity of up to βˆ’5.6%/K was applied in a low Mach number long-duration test case in a low-pressure environment. For the demonstration of the paint’s performance, a flat plate with a mounted cylinder was set up in the High-Speed Cascade Wind Tunnel (HGK). The test case was designed to generate vortex shedding frequencies up to 4300 Hz which were sampled using a high-speed camera at 40 kHz frame rate to resolve unsteady surface temperature fields for potential heat-transfer estimations. The experiments were carried out at reduced ambient pressure of p∞ = 13.8 kPa for three inflow Mach numbers being Ma∞=[0.3;0.5;0.7]. In order to enable the resolution of very low temperature fluctuations down to the noise floor of 10βˆ’5 K with high spatial and temporal resolution, the flat plate model was equipped with a sprayable carbon nanotube (CNT) heating layer. This constellation, together with the thermal sensors incorporated in the model, allowed for the calculation of a quasi-heat-transfer coefficient from the surface temperature fields. Besides the results of the experiments, the paper highlights the properties of the modified TSP as well as the methodology

    Near-Wall Flow in Turbomachinery Cascadesβ€”Results of a German Collaborative Project

    Get PDF
    This article provides a summarizing account of the results obtained in the current collabora-tive work of four research institutes concerning near-wall flow in turbomachinery. Specific questions regarding the influences of boundary layer development on blades and endwalls as well as loss mech-anisms due to secondary flow are investigated. These address skewness, periodical distortion, wake interaction and heat transfer, among others. Several test rigs with modifiable configurations are used for the experimental investigations including an axial low speed compressor, an axial high-speed wind tunnel, and an axial low-speed turbine. Approved stationary and time resolving measurements techniques are applied in combination with custom hot-film sensor-arrays. The experiments are complemented by URANS simulations, and one group focusses on turbulence-resolving simulations to elucidate the specific impact of rotation. Juxtaposing and interlacing their results the four groups provide a broad picture of the underlying phenomena, ranging from compressors to turbines, from isothermal to non-adiabatic, and from incompressible to compressible flows.The investigations reported in this article were conducted within the framework of the joint research project β€œNear-Wall Flow in Turbomachinery Cascades” which was funded and supported by the Deutsche Forschungsgemeinschaft (DFG) under grant number PAK 948. The responsibility for the contents of this publication lies entirely by the authors.Peer ReviewedPostprint (published version

    Антагоністичні протиріччя Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ простору

    Get PDF

    Epimerisation of chiral hydroxylactones by short-chain dehydrogenases/reductases accounts for sex pheromone evolution in Nasonia

    Get PDF
    Males of all species of the parasitic wasp genus Nasonia use (4R,5S)-5-hydroxy-4-decanolide (RS) as component of their sex pheromone while only N. vitripennis (Nv), employs additionally (4R,5R)-5-hydroxy-4-decanolide (RR). Three genes coding for the NAD(+)-dependent short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 are linked to the ability of Nv to produce RR. Here we show by assaying recombinant enzymes that SDRs from both Nv and N. giraulti (Ng), the latter a species with only RS in the pheromone, epimerise RS into RR and vice versa with (4R)-5-oxo-4-decanolide as an intermediate. Nv-derived SDR orthologues generally had higher epimerisation rates, which were also influenced by NAD(+) availability. Semiquantitative protein analyses of the pheromone glands by tandem mass spectrometry revealed that NV10127 as well as NV10128 and/or NV10129 were more abundant in Nv compared to Ng. We conclude that the interplay of differential expression patterns and SDR epimerisation rates on the ancestral pheromone component RS accounts for the evolution of a novel pheromone phenotype in Nv

    InstationΓ€re VerdichterstrΓΆmung

    Full text link
    • …
    corecore