675 research outputs found

    GR models of the X-ray spectral variability of MCG--6-30-15

    Full text link
    We study in detail the GR models of the X-ray spectral variability for various geometries of the X-ray source and with various relativistic effects being the dominant cause of spectral variability. The predicted properties are compared with the Suzaku observational data of the Seyfert 1 galaxy MCG--6-30-15. The data disfavor models with the X-ray source (1) moving vertically on the symmetry axis or (2) corotating with the disc and changing height not far above the disc surface. The most likely explanation for the observed variability is given by the model involving the X-ray source located at a very small, varying distance from a rapidly rotating black hole. This model predicts some enhanced variations in the red wing of the Fe line, which are not seen in the Suzaku observations. However, the enhanced variability of the red wing, while ruled out by the Suzaku data, is consistent with an excess RMS variability, between 5 and 6 keV, reported for some previous ASCA and XMM observations. We speculate that the presence or lack of such a feature is related to the change of the ionization state of the innermost part of the disc, however, investigation of such effects is currently not possible in our model (where a neutral disc is assumed). If the model, completed by description of ionization effects, proves to be fully consistent with the observational data, it will provide a strong indication that the central black hole in MCG--6-30-15 rotates rapidly, supporting similar conclusions derived from the Fe line profile.Comment: 15 pages, accepted for publication in A&

    Bulk motion Comptonization in black-hole accretion flows

    Full text link
    We study spectra generated by Comptonization of soft photons by cold electrons radially free-falling onto a black hole. We use a Monte Carlo method involving a fully relativistic description of Comptonization in the Kerr space-time. In agreement with previous studies, we find that Comptonization on the bulk motion of free fall gives rise to power-law spectra with the photon index of Gamma >~ 3. In contrast to some previous studies, we find that these power-law spectra extend only to energies << 511 keV. We indicate several effects resulting in generic cutoffs of such spectra at several tens of keV, regardless of any specific values of physical parameters in the model. This inefficiency of producing photons with energies > 100 keV rules out bulk motion Comptonization as a main radiative process in soft spectral states of black-hole binaries. The normalization of the power law (below the cutoff) with respect to the peak of the blackbody emission of the surrounding disc is typically very low, except for models with an overlap between the disc and the plasma, in which case the spectra are very soft, Gamma >~ 4.Comment: 10 pages, 4 figures, revised version, accepted for publication in MNRA

    Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    Full text link
    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretion flow oscillates, while the cold disc is absent at the QPO radius. We find that the QPO spectra are generally similar to the spectrum of radiation emitted at the QPO radius, and they are broadened by the relativistic effects. In particular, the QPO spectrum contains the disc component in the oscillating disc with a corona scenario. We also review the available data on energy dependencies of high frequency QPO, and we point out that they appear to lack the disc component in their energy spectra. This would suggest the hot flow geometry in the spectral states when high frequency QPO are observed.Comment: 8 pages, accepted for publication in MNRA

    On the light-bending model of X-ray variability of MCG-6-30-15

    Full text link
    We apply the light bending model of X-ray variability to Suzaku data of the Seyfert 1 galaxy MCG-6-30-15. We analyze the energy dependence of the root mean square (rms) variability, and discuss conditions necessary for the model to explain the characteristic decrease of the source variability around 5-8 keV. A model, where the X-ray source moves radially rather than vertically close to the disk surface, can indeed reproduce the reduced variability near the energy of the Fe Kalpha line, although the formal fit quality is poor. The model then predicts the energy spectra, which can be compared to observational data. The spectra are strongly reflection dominated, and do not provide a good fit to Suzaku spectral data of the source. The inconsistency of this result with some previous claims can be traced to our using data in a broader energy band, where effects of warm absorber in the spectrum cannot be neglected.Comment: 6 pages, PASJ, accepte

    On the influence of relativistic effects on X-ray variability of accreting black holes

    Full text link
    X-rays produced by compact flares co-rotating with a Keplerian accretion disc are modulated in time by Doppler effects. We improve on previous calculations of these effects by considering recent models of intrinsic X-ray variability, and compute the expected strength of the relativistic signal in current data of Seyfert galaxies and black hole binaries. Such signals could clearly be seen in, for example, recent XMM-Newton data from MCG-6-30-15, if indeed the X-rays were produced by co-rotating flares concentrated toward the inner disc edge around an extreme Kerr black hole. Lack of the signal in the data collected so far gives support to models, where the X-ray sources in active galaxies do not follow Keplerian orbits close to the black hole.Comment: 8 pages, replaced to match the version accepted by MNRAS. Extended discussion of assumptions on relation between time-scale of a flare and its radial position, and their influence on results. Conclusions unchange
    corecore