5 research outputs found

    Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance

    Get PDF
    Bardet–Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS‐induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems

    The Bardet–Biedl syndrome complex component BBS1 controls T cell polarity during immune synapse assembly

    No full text
    Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet–Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling
    corecore