852 research outputs found

    Modular Invariance on the Torus and Abelian Chern-Simons Theory

    Full text link
    The implementation of modular invariance on the torus as a phase space at the quantum level is discussed in a group-theoretical framework. Unlike the classical case, at the quantum level some restrictions on the parameters of the theory should be imposed to ensure modular invariance. Two cases must be considered, depending on the cohomology class of the symplectic form on the torus. If it is of integer cohomology class nn, then full modular invariance is achieved at the quantum level only for those wave functions on the torus which are periodic if nn is even, or antiperiodic if nn is odd. If the symplectic form is of rational cohomology class nr\frac{n}{r}, a similar result holds --the wave functions must be either periodic or antiperiodic on a torus rr times larger in both direccions, depending on the parity of nrnr. Application of these results to the Abelian Chern-Simons is discussed.Comment: 24 pages, latex, no figures; title changed; last version published in JM

    Ageing, dynamical scaling and conformal invariance

    Full text link
    Building on an analogy with conformal invariance, local scale transformations consistent with dynamical scaling are constructed. Two types of local scale invariance are found which act as dynamical space-time symmetries of certain non-local free field theories. The scaling form of two-point functions is completely fixed by the requirement of local scale invariance. These predictions are confirmed through tests in the 3D ANNNI model at its Lifshitz point and in ageing phenomena of simple ferromagnets, here studied through the kinetic Ising model with Glauber dynamics.Comment: Latex2e, 12 pages, 3 figures. Talk given at TH2002, Paris July 200

    Supersymmetric Extension of Galilean Conformal Algebras

    Get PDF
    The Galilean conformal algebra has recently been realised in the study of the non-relativistic limit of the AdS/CFT conjecture. This was obtained by a systematic parametric group contraction of the parent relativistic conformal field theory. In this paper, we extend the analysis to include supersymmetry. We work at the level of the co-ordinates in superspace to construct the N=1 Super Galilean conformal algebra. One of the interesting outcomes of the analysis is that one is able to naturally extend the finite algebra to an infinite one. This looks structurally similar to the N=1 superconformal algebra in two dimensions, but is different. We also comment on the extension of our construction to cases of higher NN.Comment: 19 pages; v2: 20 pages, Appendix on OPEs added, other minor changes, references adde

    Lowest Weight Representations of Super Schrodinger Algebras in One Dimensional Space

    Full text link
    Lowest weight modules, in particular, Verma modules over the N = 1,2 super Schrodinger algebras in (1+1) dimensional spacetime are investigated. The reducibility of the Verma modules is analyzed via explicitly constructed singular vectors. The classification of the irreducible lowest weight modules is given for both massive and massless representations. A vector field realization of the N = 1, 2 super Schrodinger algebras is also presented.Comment: 19 pages, no figur

    Generalized squeezed-coherent states of the finite one-dimensional oscillator and matrix multi-orthogonality

    Full text link
    A set of generalized squeezed-coherent states for the finite u(2) oscillator is obtained. These states are given as linear combinations of the mode eigenstates with amplitudes determined by matrix elements of exponentials in the su(2) generators. These matrix elements are given in the (N+1)-dimensional basis of the finite oscillator eigenstates and are seen to involve 3x3 matrix multi-orthogonal polynomials Q_n(k) in a discrete variable k which have the Krawtchouk and vector-orthogonal polynomials as their building blocks. The algebraic setting allows for the characterization of these polynomials and the computation of mean values in the squeezed-coherent states. In the limit where N goes to infinity and the discrete oscillator approaches the standard harmonic oscillator, the polynomials tend to 2x2 matrix orthogonal polynomials and the squeezed-coherent states tend to those of the standard oscillator.Comment: 18 pages, 1 figur

    Urban screens reader

    Get PDF

    Representations of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice

    Full text link
    We propose the fundamental and two dimensional representation of the Lorentz groups on a (3+1)-dimensional hypercubic lattice, from which representations of higher dimensions can be constructed. For the unitary representation of the discrete translation group we use the kernel of the Fourier transform. From the Dirac representation of the Lorentz group (including reflections) we derive in a natural way the wave equation on the lattice for spin 1/2 particles. Finally the induced representation of the discrete inhomogeneous Lorentz group is constructed by standard methods and its connection with the continuous case is discussed.Comment: LaTeX, 20 pages, 1 eps figure, uses iopconf.sty (late submission

    Structure and activity relationships for amine-based CO2 absorbents-II

    Get PDF
    A study to determine the structure and activity relationships of various amine-based CO2 absorbents was performed, in which the absorption of pure CO2 at atmospheric pressure was measured to assess the total absorption rates and capacities. Steric hindrance effect was noticed when side chain with alkyl group was present at the α-carbon to the amine group in the absorbent structure. An increase in the number of amine groups in absorbent structure, results in a higher capacity of upto 3.03 moles CO2/moles amine. Aromatic amines substituted with alkyl groups at the 2nd and 5th position show an increase in both absorption rate and capacity. © 2008 The Institution of Chemical Engineers
    • …
    corecore