4,655 research outputs found

    Radii and Binding Energies of Nuclei in the Alpha-Cluster Model

    Full text link
    The alpha-cluster model is based on two assumptions that the proton-neutron pair interactions are responsible for adherence between alpha-clusters and that the NN-interaction in the alpha-clusters is isospin independent. It allows one to estimate the Coulomb energy and the short range inter-cluster bond energy in dependence on the number of clusters. The charge radii are calculated on the number of alpha-clusters too. Unlike the Weizsacker formula in this model the binding energies of alpha-clusters and excess neutrons are estimated separately. The calculated values are in a good agreement with the experimental data.Comment: Latex2e 2.09, 13 pages, 4 figure

    Fast and accurate method for computing non-smooth solutions to constrained control problems

    Get PDF
    Introducing flexibility in the time-discretisation mesh can improve convergence and computational time when solving differential equations numerically, particularly when the solutions are discontinuous, as commonly found in control problems with constraints. State-of-the-art methods use fixed mesh schemes, which cannot achieve superlinear convergence in the presence of non-smooth solutions. In this paper, we propose using a flexible mesh in an integrated residual method. The locations of the mesh nodes are introduced as decision variables, and constraints are added to set upper and lower bounds on the size of the mesh intervals. We compare our approach to a uniform fixed mesh on a real-world satellite reorientation example. This example demonstrates that the flexible mesh enables the solver to automatically locate the discontinuities in the solution, has superlinear convergence and faster solve time

    Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red

    Full text link
    Optical resonances spanning the Near and Short Infra-Red spectral regime were exhibited experimentally by arrays of plasmonic nano-particles with concave cross-section. The concavity of the particle was shown to be the key ingredient for enabling the broad band tunability of the resonance frequency, even for particles with dimensional aspect ratios of order unity. The atypical flexibility of setting the resonance wavelength is shown to stem from a unique interplay of local geometry with surface charge distributions

    Granular clustering in a hydrodynamic simulation

    Full text link
    We present a numerical simulation of a granular material using hydrodynamic equations. We show that, in the absence of external forces, such a system phase-separates into high density and low density regions. We show that this separation is dependent on the inelasticity of collisions, and comment on the mechanism for this clustering behavior. Our results are compatible with the granular clustering seen in experiments and molecular dynamic simulations of inelastic hard disks.Comment: 4 pages, 5 figure

    Prediction of stroke using deep learning model

    Full text link
    © Springer International Publishing AG 2017. Many predictive techniques have been widely applied in clinical decision making such as predicting occurrence of a disease or diagnosis, evaluating prognosis or outcome of diseases and assisting clinicians to recommend treatment of diseases. However, the conventional predictive models or techniques are still not effective enough in capturing the underlying knowledge because it is incapable of simulating the complexity on feature representation of the medical problem domains. This research reports predictive analytical techniques for stroke using deep learning model applied on heart disease dataset. The atrial fibrillation symptoms in heart patients are a major risk factor of stroke and share common variables to predict stroke. The outcomes of this research are more accurate than medical scoring systems currently in use for warning heart patients if they are likely to develop stroke

    Bounds on the Higgs-Boson Mass in the Presence of Non-Standard Interactions

    Get PDF
    The triviality and vacuum stability bounds on the Higgs-boson mass are revisited in the presence of new interactions parameterized in a model-independent way by an effective lagrangian. When the scale of new physics is below 50 TeV the triviality bound is unchanged but the stability lower bound is increased by 40-60 GeV. Should the Higgs-boson mass be close to its current lower experimental limit, this leads to the possibility of new physics at the scale of a few TeV, even for modest values of the effective lagrangian parameters.Comment: 5 pages, 2 figures, RevTex, submitted to PR

    GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions

    Full text link
    GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure
    corecore