24 research outputs found

    Efficient and Stable Antimony Selenoiodide Solar Cells

    Get PDF
    Although antimony selenoiodide (SbSeI) exhibits a suitable bandgap as well as interesting physicochemical properties, it has not been applied to solar cells. Here the fabrication of SbSeI solar cells is reported for the first time using multiple spin-coating cycles of SbI3 solutions on Sb2Se3 thin layer, which is formed by thermal decomposition after depositing a single-source precursor solution. The performance exhibits a short-circuit current density of 14.8 mA cm(-2), an open-circuit voltage of 473.0 mV, and a fill factor of 58.7%, yielding a power conversion efficiency (PCE) of 4.1% under standard air mass 1.5 global (AM 1.5 G, 100 mW cm(-2)). The cells retain approximate to 90.0% of the initial PCE even after illuminating under AM 1.5G (100 mW cm(-2)) for 2321 min. Here, a new approach is provided for combining selenide and iodide as anions, to fabricate highly efficient, highly stable, green, and low-cost solar cells

    Heavy pnictogen chalcohalides for efficient, stable, and environmentally friendly solar cell applications

    Full text link
    Solar cell technology is an effective solution for addressing climate change and the energy crisis. Therefore, many researchers have investigated various solar cell absorbers that convert Sunlight into electric energy. Among the different materials researched, heavy pnictogen chalcohalides comprising heavy pnictogen cations, such as Bi3+ and Sb3+, and chalcogen-halogen anions have recently been revisited as emerging solar absorbers because of their potential for efficient, stable, and low-toxicity solar cell applications. This review explores the recent progress in the applications of heavy pnictogen chalcohalides, including oxyhalides and mixed chalcohalides, in solar cells. We categorize them into material types based on their common structural characteristics and describe their up-to-date developments in solar cell applications. Finally, we discuss their material imitations, challenges for further development, and possible strategies for overcoming them.FALS

    Efficient Antimony-Based Solar Cells by Enhanced Charge Transfer

    Full text link
    The main mechanism of most solar cells is that the light produces photogenerated electrons and holes, which are transferred to the electron transport layer and the hole transport layer (HTL), respectively. Then, these holes and electrons are transported to the anode and cathode, respectively, to generate electric current. Thus, charge transfer is a crucial process to fabricate efficient solar cells. Here, a fast vapor process is developed to fabricate SbSI and SbSI-interlayered Sb2S3 solar cells by annealing an Sb2S3 film and SbI3 powder in an inert gas atmosphere. The charge transfer of the vapor-processed SbSI solar cells is increased by shortening the path length from SbSI to the HTL. This is achieved by an intimate contact between SbSI and the HTL, which is obtained by optimizing the morphology of SbSI, resulting in a record power conversion efficiency (PCE) of 3.62% in pure SbSI-based solar cells under standard illumination at 100 mW cm(-2). In addition, the charge transfer of the SbSI-interlayered Sb2S3 solar cells is enhanced by increasing the external driving force, an energetically favorable driving force provided by the TiO2/Sb2S3/SbSI/HTM structure, and the best-performing SbSI-interlayered Sb2S3 solar cell exhibits a PCE of 6.08%

    Efficient Solar Cells Employing Light-Harvesting Sb 0.67 Bi 0.33 SI

    Full text link
    Sb 1??? x Bi x SI, an isostructural material with the well-known quasi-1D SbSI, possesses good semiconductive and ferroelectric properties but is not applied in solar cells. Herein, solar cells based on alloyed Sb 0.67 Bi 0.33 SI (ASBSI) as a light harvester are fabricated. ASBSI is prepared through the reaction of bismuth triiodide in N,N-dimethylformamide solution with an antimony trisulfide film deposited on a mesoporous (mp)-TiO 2 electrode via chemical bath deposition at 250 ??C under an argon or nitrogen atmosphere; the alloy exhibits a promising bandgap (1.62 eV). The best performing cell fabricated with poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b???]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] as the hole-transporting layer shows 4.07% in a power conversion efficiency (PCE) under the standard illumination conditions of 100 mW cm ???2 . The unencapsulated cells exhibit good comprehensive stability with retention of 92% of zjr initial PCE under ambient conditions of 60% relative humidity over 360 h, 93% after 1 sun illumination for 1254 min, and 92% after storage at 85 ??C in air for 360 h

    Strain Tuning via Larger Cation and Anion Codoping for Efficient and Stable Antimony-Based Solar Cells

    Full text link
    Strain induced by lattice distortion is one of the key factors that affect the photovoltaic performance via increasing defect densities. The unsatisfied power conversion efficiencies (PCEs) of solar cells based on antimony chalcogenides (Sb-Chs) are owing to their photoexcited carriers being self-trapped by the distortion of Sb2S3 lattice. However, strain behavior in Sb-Chs-based solar cells has not been investigated. Here, strain tuning in Sb-Chs is demonstrated by simultaneously replacing Sb and S with larger Bi and I ions, respectively. Bi/I codoped Sb2S3 cells are fabricated using poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-enzothiadiazole)] as the hole-transporting layer. Codoping reduced the bandgap and rendered a bigger tension strain (1.76 x 10(-4)) to a relatively smaller compression strain (-1.29 x 10(-4)). The 2.5 mol% BiI3 doped Sb2S3 cell presented lower trap state energy level than the Sb2S3 cell; moreover, this doping amount effectively passivated the trap states. This codoping shows a similar trend even in the low bandgap Sb-2(SxSe1-x)(3) cell, resulting in 7.05% PCE under the standard illumination conditions (100 mW cm(-2)), which is one of the top efficiencies in solution processing Sb-2(SxSe1-x)(3) solar cells. Furthermore, the doped cells present higher humidity, thermal and photo stability. This study provides a new strategy for stable Pb-free solar cells

    Nanostructured Heterojunction Solar Cells Based on Pb2SbS2I3: Linking Lead Halide Perovskites and Metal Chalcogenides

    Full text link
    The quaternary chalcogeno-iodides Pb2SbS2I3, comprising group IV and V elements, has attracted significant attention because of its unique semiconducting and ferroelectric properties. However, it has not yet been applied in solar cells. Herein, we report the first fabrication of nanostructured solar cells using Pb2SbS2I3 as a light harvester, prepared through a reaction between antimony sulfide, deposited by chemical bath deposition on mesoporous (mp)-TiO2, and lead iodide under an Ar atmosphere at 300 degrees C. A power conversion efficiency (PCE) of 3.12% under the standard illumination conditions of 100 mW/cm(2) was achieved for the Pb2SbS2I3 layer sandwiched between mp-TiO2 and an organic hole conductor. Pb2SbS2I3 cells without encapsulation show good humidity stability over 30 days, retaining about 90% of the initial performanc

    Aligned Nanofibers as an Interfacial Layer for Achieving High-Detectivity and Fast-Response Organic Photodetectors

    Full text link
    We report that aligned nanofibers (ANs) prepared by electrostatic spinning technology as an interfacial layer can significantly enhance the performance of inverted organic photodetectors. With the insertion of ANs of titanium dioxide (TiO<sub>2</sub>), the optimized organic photodetectors had a highest detectivity of 2.93 × 10<sup>13</sup> Jones at zero bias, which is about 3 times higher than that of a similar organic photodetector without ANs and also markedly higher than that of traditional silicon photodetectors. The performance of the devices with different TiO<sub>2</sub> ANs as the interfacial layer was investigated, and the results exhibited that photodetectors with one-way ANs had the highest detectivity and shortest response time. This work provides a new application of nanofibers fabricated by a simple and controllable process in high-performance organic photodetectors

    Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells

    Full text link
    The quaternary chalcogenide halides of group IV and V elements have attracted much attention due to their interesting semiconducting properties as well as a suitable band gap for solar cells. Here, for the first time, we report on solar cells using tin-antimony sulfoiodide (Sn2SbS2I3). Sn2SbS2I3 solar cells were fabricated using a chemical single-step deposition process with a solution containing a SbCl3-thiourea complex and SnI2 with the configuration of TiO2 and poly [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b&apos;]dithiophene)-alt-4,7-(2,1,3-enzothiadiazole)] as the electron- and hole-transporting layers, respectively. The best-performing cell exhibits a power conversion efficiency of 4.04% under the illumination of standard AM 1.5G conditions (100 mW cm(-2)) These unencapsulated cells exhibited good stabilities at 80% relative humidity, 85 degrees C in air, and under illumination, respectively. These results provide guidelines for fabrication of lead-free heteroleptic perovskite solar cells by hosting divalent or combinations of monovalent and trivalent metal cations

    Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process

    Full text link
    The lithium-rich Li[Li0.2Ni0.13Mn0.54Co0.13]O2 nanoplates were synthesized using a molten-salt method. The nanoplates showed an initial reversible discharge capacity of 233 mA&middot;h&middot;g&minus;1, with a fast capacity decay. The morphology and micro-structural change, after different cycles, were studied by a scanning electron microscope (SEM) and transmission electron microscopy (TEM) to understand the mechanism of the capacity decay. Our results showed that the cracks generated from both the particle surface and the inner, and increased with long-term cycling at 0.1 C rate (C = 250 mA&middot;g&minus;1), together with the layered to spinel and rock-salt phase transitions. These results show that the cracks and phase transitions could be responsible for the capacity decay. The results will help us to understand capacity decay mechanisms, and to guide our future work to improve the electrochemical performance of lithium-rich cathode materials

    Stabilization of Lead-Tin-Alloyed Inorganic-Organic Halide Perovskite Quantum Dots

    Full text link
    Recently, lead-tin-based alloyed halide perovskite quantum dots (QDs) with improved stability and less toxicity have been introduced. However, the perovskite QDs containing tin are still unstable and exhibit low photoluminescence quantum yields (PLQYs), owing to the presence of defects in the alloyed system. Here, we have attempted to introduce sulfur anions (S2-) into the host lattice (MAPb(0.75)Sn(0.25)Br(3)) as a promising route to stable alloyed perovskite QDs with improved stability and PLQY. In this study, we used elemental sulfur as a sulfur precursor. The successful incorporation of sulfur anions into the host lattice resulted in a highly improved PLQY (&gt;75% at room temperature), which is believed to be due to a reduction in the defect-related non-radiative recombination centers present in the host lattice. Furthermore, we found that the emission property could be tuned between the bright green and cyan bluish regions without compromising on color quality. This work invigorates the perovskite research community to prepare stable, bright, and color-tunable alloyed inorganic-organic perovskite QDs without compromising on their phases and color quality, which can lead to considerable advances in display technology
    corecore