5 research outputs found

    Unleashing the Multilingual Encoder Potential: Boosting Zero-Shot Performance via Probability Calibration

    Full text link
    Pretrained multilingual encoder models can directly perform zero-shot multilingual tasks or linguistic probing by reformulating the input examples into cloze-style prompts. This is accomplished by predicting the probabilities of the label words at the masked token position, without requiring any updates to the model parameters. However, the performance of this method is limited by the model's bias toward predicting label words which frequently occurred during the pretraining. These words typically receive high probabilities. To address this issue, we combine the models with calibration techniques which modify the probabilities of label words predicted by the models. We first validate the effectiveness of a proposed simple calibration method together with other existing techniques on monolingual encoders in both zero- and few-shot scenarios. We subsequently employ these calibration techniques on multilingual encoders, resulting in substantial performance improvements across a wide range of tasks.Comment: Accepted to Findings of EMNLP 202

    Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages

    Get PDF
    Multilingual Pretrained Language Models (MPLMs) perform strongly in cross-lingual transfer. We propose Prompts Augmented by Retrieval Crosslingually (PARC) to improve zero-shot performance on low-resource languages (LRLs) by augmenting the context with prompts consisting of semantically similar sentences retrieved from a high-resource language (HRL). PARC improves zero-shot performance on three downstream tasks (sentiment classification, topic categorization, natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in unlabeled (+5.1%) and labeled settings (+16.3%). PARC also outperforms finetuning by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs

    Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages

    Full text link
    Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.Comment: Accepted to Findings of ACL 202

    Baby's CoThought: Leveraging Large Language Models for Enhanced Reasoning in Compact Models

    Full text link
    Large Language Models (LLMs) demonstrate remarkable performance on a variety of natural language understanding (NLU) tasks, primarily due to their in-context learning ability. This ability could be applied to building babylike models, i.e. models at small scales, improving training efficiency. In this paper, we propose a "CoThought" pipeline, which efficiently trains smaller "baby" language models (BabyLMs) by leveraging the Chain of Thought prompting of LLMs. Our pipeline restructures a dataset of less than 100M in size using GPT-3.5-turbo, transforming it into task-oriented, human-readable texts that are comparable to the school texts for language learners. The BabyLM is then pretrained on this restructured dataset in a RoBERTa fashion. In evaluations across 4 benchmarks, our BabyLM outperforms the vanilla RoBERTa in 10 linguistic, NLU, and question-answering tasks by more than 3 points, showing a superior ability to extract contextual information. These results suggest that compact LMs pretrained on small, LLM-restructured data can better understand tasks and achieve improved performance.Comment: CoNLL 2023 BabyLM Challeng
    corecore