28 research outputs found

    0171: Identification of complicated carotid plaques by adding functional fluorodeoxyglucose-positron emission tomographic imaging to morphological characteristics on computed tomographic angiography

    Get PDF
    AimWe developed a simple semi-quantitative score for the analysis of carotid plaques with FDG-PET-CTA imaging and tested whether adding functional imaging criteria extracted from FDG-PET imaging to morphological plaque characteristics identified with CTA might improve the detection of complicated plaques.Material and MethodsTwenty-eight patients scheduled for carotid endarterectomy were imaged with PET after injection of FDG followed by CTA of the supra-aortic trunks. Morphological aspects of plaques identified with CTA and metabolic activity quantified with FDG-PET (Tissue to Background ratio, TBR) were measured in the carotid segment with the highest degree of luminal stenosis and graded using semi-quantitative CT and PET scores. Combined score was calculated for each carotid artery by summing CT and PET scores. After carotid endarterectomy, vascular surgeons classified carotid plaques macroscopically as complicated or non-complicated.ResultsTwenty-eight carotid arteries were operated in 26 patients (24 symptomatic patients). Sixteen plaques were classified macroscopically as complicated. CTA detected hypodense regions and ulcerations in 81% and 25%, of complicated plaques, and in 33% and 0% of non-complicated plaques, respectively. Hypodense areas on CTA identified complicated plaques with a sensitivity of 87% and a specificity of 67%. Mean TBR with FDG-PET was measured at 2.2±0.4 in complicated plaques and 1.9±0.3 in non-complicated plaques (p<0.05). Values for the semi-quantitative score based on plaques characteristics with CTA and FDG-PET were 5.4±1.7 in complicated plaques and 2.5±2.4 in non-complicated plaques (p<0.05). A combined PET-CT score≥3 identified complicated plaques with a sensitivity of 100% and a specificity of 67%.ConclusionsAdding FDG-PET imaging criteria to morphological characteristics of plaques on CTA improved the sensitivity of the detection of complicated carotid plaques

    Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring

    Get PDF
    Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques

    Immunoreactivity of the SARS-CoV-2 entry proteins ACE-2 and TMPRSS-2 in murine models of hormonal manipulation, ageing, and cardiac injury

    Full text link
    Previous work indicates that SARS-CoV-2 virus entry proteins angiotensin-converting enzyme 2 (ACE-2) and the cell surface transmembrane protease serine 2 (TMPRSS-2) are regulated by sex hormones. However, clinical studies addressing this association have yielded conflicting results. We sought to analyze the impact of sex hormones, age, and cardiovascular disease on ACE-2 and TMPRSS-2 expression in different mouse models. ACE-2 and TMPRSS-2 expression was analyzed by immunostaining in a variety of tissues obtained from FVB/N mice undergoing either gonadectomy or sham-surgery and being subjected to ischemia-reperfusion injury or transverse aortic constriction surgery. In lung tissues sex did not have a significant impact on the expression of ACE-2 and TMPRSS-2. On the contrary, following myocardial injury, female sex was associated to a lower expression of ACE-2 at the level of the kidney tubules. In addition, after myocardial injury, a significant correlation between younger age and higher expression of both ACE-2 and TMPRSS-2 was observed for lung alveoli and bronchioli, kidney tubules, and liver sinusoids. Our experimental data indicate that gonadal hormones and biological sex do not alter ACE-2 and TMPRSS-2 expression in the respiratory tract in mice, independent of disease state. Thus, sex differences in ACE-2 and TMPRSS-2 protein expression observed in mice may not explain the higher disease burden of COVID-19 among men

    Imaging of heart disease in women: review and case presentation

    Full text link
    Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeutic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful consideration, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve management and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality

    Impact of deep learning image reconstructions (DLIR) on coronary artery calcium quantification

    Get PDF
    BACKGROUND Deep learning image reconstructions (DLIR) have been recently introduced as an alternative to filtered back projection (FBP) and iterative reconstruction (IR) algorithms for computed tomography (CT) image reconstruction. The aim of this study was to evaluate the effect of DLIR on image quality and quantification of coronary artery calcium (CAC) in comparison to FBP. METHODS One hundred patients were consecutively enrolled. Image quality-associated variables (noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR)) as well as CAC-derived parameters (Agatston score, mass, and volume) were calculated from images reconstructed by using FBP and three different strengths of DLIR (low (DLIR_L), medium (DLIR_M), and high (DLIR_H)). Patients were stratified into 4 risk categories according to the Coronary Artery Calcium - Data and Reporting System (CAC-DRS) classification: 0 Agatston score (very low risk), 1-99 Agatston score (mildly increased risk), Agatston 100-299 (moderately increased risk), and ≥ 300 Agatston score (moderately-to-severely increased risk). RESULTS In comparison to standard FBP, increasing strength of DLIR was associated with a significant and progressive decrease of image noise (p < 0.001) alongside a significant and progressive increase of both SNR and CNR (p < 0.001). The use of incremental levels of DLIR was associated with a significant decrease of Agatston CAC score and CAC volume (p < 0.001), while mass score remained unchanged when compared to FBP (p = 0.232). The underestimation of Agatston CAC led to a CAC-DRS misclassification rate of 8%. CONCLUSION DLIR systematically underestimates Agatston CAC score. Therefore, DLIR should be used cautiously for cardiovascular risk assessment. KEY POINTS • In coronary artery calcium imaging, the implementation of deep learning image reconstructions improves image quality, by decreasing the level of image noise. • Deep learning image reconstructions systematically underestimate Agatston coronary artery calcium score. • Deep learning image reconstructions should be used cautiously in clinical routine to measure Agatston coronary artery calcium score for cardiovascular risk assessment

    Role of sex hormones in modulating myocardial perfusion and coronary flow reserve

    Full text link
    BACKGROUND A growing body of evidence highlights sex differences in the diagnostic accuracy of cardiovascular imaging modalities. Nonetheless, the role of sex hormones in modulating myocardial perfusion and coronary flow reserve (CFR) is currently unclear. The aim of our study was to assess the impact of female and male sex hormones on myocardial perfusion and CFR. METHODS Rest and stress myocardial perfusion imaging (MPI) was conducted by small animal positron emission tomography (PET) with [18^{18}F]flurpiridaz in a total of 56 mice (7-8 months old) including gonadectomized (Gx) and sham-operated males and females, respectively. Myocardial [18^{18}F]flurpiridaz uptake (% injected dose per mL, % ID/mL) was used as a surrogate for myocardial perfusion at rest and following intravenous regadenoson injection, as previously reported. Apparent coronary flow reserve (CFRApp_{App}) was calculated as the ratio of stress and rest myocardial perfusion. Left ventricular (LV) morphology and function were assessed by cardiac magnetic resonance (CMR) imaging. RESULTS Orchiectomy resulted in a significant decrease of resting myocardial perfusion (Gx vs. sham, 19.4 ± 1.0 vs. 22.2 ± 0.7 % ID/mL, p = 0.034), while myocardial perfusion at stress remained unchanged (Gx vs. sham, 27.5 ± 1.2 vs. 27.3 ± 1.2 % ID/mL, p = 0.896). Accordingly, CFRApp_{App} was substantially higher in orchiectomized males (Gx vs. sham, 1.43 ± 0.04 vs. 1.23 ± 0.05, p = 0.004), and low serum testosterone levels were linked to a blunted resting myocardial perfusion (r = 0.438, p = 0.020) as well as an enhanced CFRApp_{App} (r = -0.500, p = 0.007). In contrast, oophorectomy did not affect myocardial perfusion in females. Of note, orchiectomized males showed a reduced LV mass, stroke volume, and left ventricular ejection fraction (LVEF) on CMR, while no such effects were observed in oophorectomized females. CONCLUSION Our experimental data in mice indicate that sex differences in myocardial perfusion are primarily driven by testosterone. Given the diagnostic importance of PET-MPI in clinical routine, further studies are warranted to determine whether testosterone levels affect the interpretation of myocardial perfusion findings in patients

    Nuclear Imaging in Infective Endocarditis

    No full text
    Infective endocarditis (IE) is a life-threatening disease with stable prevalence despite prophylactic, diagnostic, and therapeutic advances. In parallel to the growing number of cardiac devices implanted, the number of patients developing IE on prosthetic valves and cardiac implanted electronic device (CIED) is increasing at a rapid pace. The diagnosis of IE is particularly challenging, and currently relies on the Duke-Li modified classification, which include clinical, microbiological, and imaging criteria. While echocardiography remains the first line imaging technique, especially in native valve endocarditis, the incremental value of two nuclear imaging techniques, 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG-PET/CT) and white blood cells single photon emission tomography with computed tomography (WBC-SPECT), has emerged for the management of prosthetic valve and CIED IE. In this review, we will summarize the procedures for image acquisition, discuss the role of 18F-FDG-PET/CT and WBC-SPECT imaging in different clinical situations of IE, and review the respective diagnostic performance of these nuclear imaging techniques and their integration into the diagnostic algorithm for patients with a suspicion of IE

    Cutting-Edge Imaging of Cardiac Metastases from Neuroendocrine Tumors: Lesson from a Case Series

    No full text
    With the increasing availability of high-performance medical imaging for the management of patients with neuroendocrine tumors (NETs), a progressive growth of asymptomatic and incidentally detected cardiac metastases (CMs) has been observed in the recent years. In clinical practice, CMs of NENs are often incidentally detected by whole-body 68Ga-labeled somatostatin analogs or 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography, and afterwards accurately characterized by cardiac magnetic resonance (CMR) and/or gated cardiac computed tomography when CMR is contraindicated or not available. The interpreting physician should familiarize with the main imaging features of CM, a finding that may be encountered in NETs patients more than previously thought. Herein, we present a case series of four patients with CMs from small-intestine NETs highlighting strengths and weaknesses of a multimodality imaging approach in clinical practice

    Cutting-edge imaging of cardiac metastases from neuroendocrine tumors: Lesson from a case series

    Get PDF
    With the increasing availability of high-performance medical imaging for the management of patients with neuroendocrine tumors (NETs), a progressive growth of asymptomatic and incidentally detected cardiac metastases (CMs) has been observed in the recent years. In clinical practice, CMs of NENs are often incidentally detected by whole-bod
    corecore