2,213 research outputs found

    Convex Trace Functions on Quantum Channels and the Additivity Conjecture

    Full text link
    We study a natural generalization of the additivity problem in quantum information theory: given a pair of quantum channels, then what is the set of convex trace functions that attain their maximum on unentangled inputs, if they are applied to the corresponding output state? We prove several results on the structure of the set of those convex functions that are "additive" in this more general sense. In particular, we show that all operator convex functions are additive for the Werner-Holevo channel in 3x3 dimensions, which contains the well-known additivity results for this channel as special cases.Comment: 9 pages, 1 figure. Published versio

    Significance of solutions of the inverse Biot-Savart problem in thick superconductors

    Full text link
    The evaluation of current distributions in thick superconductors from field profiles near the sample surface is investigated theoretically. A simple model of a cylindrical sample, in which only circular currents are flowing, reduces the inversion to a linear least squares problem, which is analyzed by singular value decomposition. Without additional assumptions about the current distribution (e.g. constant current over the sample thickness), the condition of the problem is very bad, leading to unrealistic results. However, any additional assumption strongly influences the solution and thus renders the solutions again questionable. These difficulties are unfortunately inherent to the inverse Biot-Savart problem in thick superconductors and cannot be avoided by any models or algorithms

    Cascades: A view from Audience

    Full text link
    Cascades on online networks have been a popular subject of study in the past decade, and there is a considerable literature on phenomena such as diffusion mechanisms, virality, cascade prediction, and peer network effects. However, a basic question has received comparatively little attention: how desirable are cascades on a social media platform from the point of view of users? While versions of this question have been considered from the perspective of the producers of cascades, any answer to this question must also take into account the effect of cascades on their audience. In this work, we seek to fill this gap by providing a consumer perspective of cascade. Users on online networks play the dual role of producers and consumers. First, we perform an empirical study of the interaction of Twitter users with retweet cascades. We measure how often users observe retweets in their home timeline, and observe a phenomenon that we term the "Impressions Paradox": the share of impressions for cascades of size k decays much slower than frequency of cascades of size k. Thus, the audience for cascades can be quite large even for rare large cascades. We also measure audience engagement with retweet cascades in comparison to non-retweeted content. Our results show that cascades often rival or exceed organic content in engagement received per impression. This result is perhaps surprising in that consumers didn't opt in to see tweets from these authors. Furthermore, although cascading content is widely popular, one would expect it to eventually reach parts of the audience that may not be interested in the content. Motivated by our findings, we posit a theoretical model that focuses on the effect of cascades on the audience. Our results on this model highlight the balance between retweeting as a high-quality content selection mechanism and the role of network users in filtering irrelevant content

    Moments of the Proton F2 Structure Function at Low Q2

    Get PDF
    The Q^2 dependence of inclusive electron-proton scattering F_2 structure function data in both the nucleon resonance region and the deep inelastic region, at momentum transfers below 5 (GeV/c)^2, is investigated. Moments of F_2 are constructed, down to momentum transfers of Q^2 ~ 0.1 (GeV/c)^2. The second moment is only slowly varying with Q^2 down to Q^2 ~ 1 (GeV/c)^2, which is a reflection of duality. Below Q^2 of 1 (GeV/c)^2, the Q^2 dependence of the moments is predominantly governed by the elastic contribution, whereas the inelastic channels still seem governed by local duality.Comment: 11 page paper, 1 LaTeX file, 10 postscript figure file

    Localizability of Wireless Sensor Networks: Beyond Wheel Extension

    Full text link
    A network is called localizable if the positions of all the nodes of the network can be computed uniquely. If a network is localizable and embedded in plane with generic configuration, the positions of the nodes may be computed uniquely in finite time. Therefore, identifying localizable networks is an important function. If the complete information about the network is available at a single place, localizability can be tested in polynomial time. In a distributed environment, networks with trilateration orderings (popular in real applications) and wheel extensions (a specific class of localizable networks) embedded in plane can be identified by existing techniques. We propose a distributed technique which efficiently identifies a larger class of localizable networks. This class covers both trilateration and wheel extensions. In reality, exact distance is almost impossible or costly. The proposed algorithm based only on connectivity information. It requires no distance information

    All Who Wander: On the Prevalence and Characteristics of Multi-community Engagement

    Full text link
    Although analyzing user behavior within individual communities is an active and rich research domain, people usually interact with multiple communities both on- and off-line. How do users act in such multi-community environments? Although there are a host of intriguing aspects to this question, it has received much less attention in the research community in comparison to the intra-community case. In this paper, we examine three aspects of multi-community engagement: the sequence of communities that users post to, the language that users employ in those communities, and the feedback that users receive, using longitudinal posting behavior on Reddit as our main data source, and DBLP for auxiliary experiments. We also demonstrate the effectiveness of features drawn from these aspects in predicting users' future level of activity. One might expect that a user's trajectory mimics the "settling-down" process in real life: an initial exploration of sub-communities before settling down into a few niches. However, we find that the users in our data continually post in new communities; moreover, as time goes on, they post increasingly evenly among a more diverse set of smaller communities. Interestingly, it seems that users that eventually leave the community are "destined" to do so from the very beginning, in the sense of showing significantly different "wandering" patterns very early on in their trajectories; this finding has potentially important design implications for community maintainers. Our multi-community perspective also allows us to investigate the "situation vs. personality" debate from language usage across different communities.Comment: 11 pages, data available at https://chenhaot.com/pages/multi-community.html, Proceedings of WWW 2015 (updated references

    Higher twists in the pion structure function

    Full text link
    We calculate the QCD moments of the pion structure function using Drell-Yan data on the quark distributions in the pion and a phenomenological model for the resonance region. The extracted higher twist corrections are found to be larger than those for the nucleon, contributing around 50% of the lowest moment at Q^2=1 GeV^2.Comment: 8 pages, 3 figures, to appear in Phys. Rev.
    corecore