4 research outputs found

    A compendium of multi-omics data illuminating host responses to lethal human virus infections

    Get PDF
    Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology

    Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data

    No full text
    We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC–MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc

    A systematic survey of floral nectaries

    No full text
    The construction of classifications, as well as the understanding of biological diversity, depends upon a careful comparison of attributes of the organisms studied (Stuessy, 1990). It is widely known that data from diverse sources showing differences from taxon to taxon are of systematic significance. Dur-ing the 20th century, systematists have emphasized that their discipline involves a synthesis of all knowledge (Stevens, 1994) or, in other words, the variation of as many relevant characters as possible should be incorporated into the natural system to be constructed. The extent to which particular characters are constant or labile will determine their usefulness to syste-matics. In general, more conservative characters will be valuable in defining families and orders, whereas more labile characters may be useful at the ge-neric and specific levels (Webb, 1984). There is no doubt that floral characters are among the most used in the classification of flowering plants. At the same time, they constitute essential features in diagnostic keys to taxa in both taxonomic treatments and Floras (Cronquist, 1981, 1988).Fil: Bernardello, Gabriel Luis Mario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; Argentin
    corecore