179 research outputs found
Exploring patterns of recurrent melanoma in Northeast Scotland to inform the introduction a digital self-examination intervention
Peer reviewedPublisher PD
The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient
Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W
<p>Abstract</p> <p>Background</p> <p>We examined the effects of the R325W mutation on the three-dimensional (3D) structure of the β-cell-specific Zn<sup>2+ </sup>(zinc) transporter ZnT-8.</p> <p>Methods</p> <p>A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the <it>Escherichia coli </it>(<it>E. coli</it>) zinc transporter YiiP at 3.8 Å resolution.</p> <p>Results</p> <p>The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the <it>E. coli </it>zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH<sub>3</sub><sup>+ </sup>group of Arg325 is predicted to form an ionic interaction with the β-COO<sup>- </sup>group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins.</p> <p>Conclusions</p> <p>Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer to the correct sites in the pancreatic islet cells and are consistent with the observation that the <it>SLC30A8 </it>gene variant R325W has a low predicted value for future type 2 diabetes at population-based level.</p
Differential Subcellular Localization of the Splice Variants of the Zinc Transporter ZnT5 Is Dictated by the Different C-Terminal Regions
Zinc is emerging as an important intracellular signaling molecule, as well as fulfilling essential structural and catalytic functions through incorporation in a myriad of zinc metalloproteins so it is important to elucidate the molecular mechanisms of zinc homeostasis, including the subcellular localizations of zinc transporters.Two splice variants of the human SLC30A5 Zn transporter gene (ZnT5) have been reported in the literature. These variants differ at their N- and C-terminal regions, corresponding with the use of different 5' and 3' exons. We demonstrate that full length human ZnT5 variant B is a genuine transcript in human intestinal cells and confirm expression of both variant A and variant B in a range of untreated human tissues by splice variant-specific RT-PCR. Using N- or C-terminal GFP or FLAG fusions of both isoforms of ZnT5 we identify that the differential subcellular localization to the Golgi apparatus and ER respectively is a function of their alternative C-terminal sequences. These different C-terminal regions result from the incorporation into the mature transcript of either the whole of exon 14 (variant B) or only the 5' region of exon 14 plus exons 15-17 (variant A).We thus propose that exons 15 to 17 include a signal that results in trafficking of ZnT5 to the Golgi apparatus and that the 3' end of exon 14 includes a signal that leads to retention in the ER
Metabolic, hygric and ventilatory physiology of a hypermetabolic marsupial, the honey possum (Tarsipes rostratus)
The honey possum is the only non-volant mammal to feed exclusively on a diet of nectar and pollen. Like other mammalian and avian nectarivores, previous studies indicated that the honey possum's basal metabolic rate was higher than predicted for a marsupial of equivalent body mass. However, these early measurements have been questioned. We re-examined the basal metabolic rate (2.52 +/- A 0.222 ml O(2) g(-1) h(-1)) of the honey possum and confirm that it is indeed higher (162%) than predicted for other marsupials both before and after accounting for phylogenetic history. This, together with its small body mass (5.4 +/- A 0.14 g; 1.3% of that predicted by phylogeny) may be attributed to its nectarivorous diet and mesic distribution. Its high-basal metabolic rate is associated with a high-standard body temperature (36.6 +/- A 0.48A degrees C) and oxygen extraction (19.4%), but interestingly the honey possum has a high point of relative water economy (17.0A degrees C) and its standard evaporative water loss (4.33 +/- A 0.394 mg H(2)O g(-1) h(-1)) is not elevated above that of other marsupials, despite its mesic habitat and high dietary water intake.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Comparison of tolerability and adverse symptoms in oxcarbazepine and carbamazepine in the treatment of trigeminal neuralgia and neuralgiform headaches using the Liverpool Adverse Events Profile (AEP)
Background
Adverse effects of drugs are poorly reported in the literature . The aim of this study was to examine the frequency of the adverse events of antiepileptic drugs (AEDs), in particular carbamazepine (CBZ) and oxcarbazepine (OXC) in patients with neuralgiform pain using the psychometrically tested Liverpool Adverse Events Profile (AEP) and provide clinicians with guidance as to when to change management.
Methods
The study was conducted as a clinical prospective observational exploratory survey of 161 patients with idiopathic trigeminal neuralgia and its variants of whom 79 were on montherapy who attended a specialist clinic in a London teaching hospital over a period of 2 years. At each consultation they completed the AEP questionnaire which provides scores of 19–76 with toxic levels being considered as scores >45.
Results
The most common significant side effects were: tiredness 31.3 %, sleepiness 18.2 %, memory problems 22.7 %, disturbed sleep 14.1 %, difficulty concentrating and unsteadiness 11.6 %. Females reported significantly more side effects than males. Potential toxic dose for females is approximately 1200 mg of OXC and 800 mg of CBZ and1800mg of OXC and 1200 mg of CBZ for males.
Conclusions
CBZ and OXC are associated with cognitive impairment. Pharmacokinetic and pharmacodynamic differences are likely to be the reason for gender differences in reporting side effects. Potentially, females need to be prescribed lower dosages in view of their tendency to reach toxic levels at lower dosages.
Side effects associated with AED could be a major reason for changing drugs or to consider a referral for surgical management
Illusionary Self-Motion Perception in Zebrafish
Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor instabilities that have been related to achiasmatic bel mutants, reversed optokinetic response (OKR) and congenital nystagmus (CN, involuntary conjugate oscillations of both eyes), looping opens a door to study the influence of visual input and eye movements on postural balance. Our result shows that looping correlates perfectly with reversed OKR and CN and is vision-dependent and contrast sensitive. CN precedes looping and the direction of the CN slow phase is predictive of the looping direction, but is absent during looping. Therefore, looping may be triggered by CN in bel. Moreover, looping in wild-type fish can also be evoked by whole-field motion, suggesting that looping in a bel mutant larvae is a result of self-motion perception. In contrary to previous hypotheses, our findings indicate that postural control in vertebrates relies on both direct visual input (afference signal) and eye-movement-related signals (efference copy or reafference signal)
Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals
Toxicogenomic Analysis Suggests Chemical-Induced Sexual Dimorphism in the Expression of Metabolic Genes in Zebrafish Liver
10.1371/journal.pone.0051971PLoS ONE712
The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood:a rat model
Stress experienced in childhood is associated with an increased risk of developing psychiatric disorders in adulthood. These disorders are particularly characterized by disturbances to emotional and cognitive processes, which are not currently fully modeled in animals. Assays of cognitive bias have recently been used with animals to give an indication of their emotional/cognitive state. We used a cognitive bias test, alongside a traditional measure of anxiety (elevated plus maze), to investigate the effects of juvenile stress (JS) on adulthood behaviour using a rodent model. During the cognitive bias test, animals were trained to discriminate between two reward bowls based on a stimulus (rough/smooth sandpaper) encountered before they reached the bowls. One stimulus (e.g. rough) was associated with a lower value reward than the other (e.g. smooth). Once rats were trained, their cognitive bias was explored through the presentation of an ambiguous stimulus (intermediate grade sandpaper): a rat was classed as optimistic if it chose the bowl ordinarily associated with the high value reward. JS animals were lighter than controls, exhibited increased anxiety-like behaviour in the elevated plus maze and were more optimistic in the cognitive bias test. This increased optimism may represent an optimal foraging strategy for these underweight animals. JS animals were also faster than controls to make a decision when presented with an ambiguous stimulus, suggesting altered decision making. These results demonstrate that stress in the juvenile phase can increase anxiety-like behaviour and alter cognitive bias and decision making in adulthood in a rat model
- …