15 research outputs found

    Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines

    Get PDF
    Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved

    Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases.

    No full text
    Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases

    The survival time of chocolates on hospital wards:covert observational study

    Get PDF
    Objective To quantify the consumption of chocolates in a hospital ward environment. Design Multicentre, prospective, covert observational study. Setting Four wards at three hospitals (where the authors worked) within the United Kingdom. Participants Boxes of Quality Street (Nestlé) and Roses (Cadbury) on the ward and anyone eating these chocolates. Intervention Observers covertly placed two 350 g boxes of Quality Street and Roses chocolates on each ward (eight boxes were used in the study containing a total of 258 individual chocolates). These boxes were kept under continuous covert surveillance, with the time recorded when each chocolate was eaten. Main outcome measure Median survival time of a chocolate. Results 191 out of 258 (74%) chocolates were observed being eaten. The mean total observation period was 254 minutes (95% confidence interval 179 to 329). The median survival time of a chocolate was 51 minutes (39 to 63). The model of chocolate consumption was non-linear, with an initial rapid rate of consumption that slowed with time. An exponential decay model best fitted these findings (model R(2)=0.844, P<0.001), with a survival half life (time taken for 50% of the chocolates to be eaten) of 99 minutes. The mean time taken to open a box of chocolates from first appearance on the ward was 12 minutes (95% confidence interval 0 to 24). Quality Street chocolates survived longer than Roses chocolates (hazard ratio for survival of Roses v Quality Street 0.70, 95% confidence interval 0.53 to 0.93, P=0.014). The highest percentages of chocolates were consumed by healthcare assistants (28%) and nurses (28%), followed by doctors (15%). Conclusions From our observational study, chocolate survival in a hospital ward was relatively short, and was modelled well by an exponential decay model. Roses chocolates were preferentially consumed to Quality Street chocolates in a ward setting. Chocolates were consumed primarily by healthcare assistants and nurses, followed by doctors. Further practical studies are needed

    The survival time of chocolates on hospital wards: covert observational study

    No full text
    Objective To quantify the consumption of chocolates in a hospital ward environment. Design Multicentre, prospective, covert observational study. Setting Four wards at three hospitals (where the authors worked) within the United Kingdom. Participants Boxes of Quality Street (Nestlé) and Roses (Cadbury) on the ward and anyone eating these chocolates. Intervention Observers covertly placed two 350 g boxes of Quality Street and Roses chocolates on each ward (eight boxes were used in the study containing a total of 258 individual chocolates). These boxes were kept under continuous covert surveillance, with the time recorded when each chocolate was eaten. Main outcome measure Median survival time of a chocolate. Results 191 out of 258 (74%) chocolates were observed being eaten. The mean total observation period was 254 minutes (95% confidence interval 179 to 329). The median survival time of a chocolate was 51 minutes (39 to 63). The model of chocolate consumption was non-linear, with an initial rapid rate of consumption that slowed with time. An exponential decay model best fitted these findings (model R(2)=0.844, P<0.001), with a survival half life (time taken for 50% of the chocolates to be eaten) of 99 minutes. The mean time taken to open a box of chocolates from first appearance on the ward was 12 minutes (95% confidence interval 0 to 24). Quality Street chocolates survived longer than Roses chocolates (hazard ratio for survival of Roses v Quality Street 0.70, 95% confidence interval 0.53 to 0.93, P=0.014). The highest percentages of chocolates were consumed by healthcare assistants (28%) and nurses (28%), followed by doctors (15%). Conclusions From our observational study, chocolate survival in a hospital ward was relatively short, and was modelled well by an exponential decay model. Roses chocolates were preferentially consumed to Quality Street chocolates in a ward setting. Chocolates were consumed primarily by healthcare assistants and nurses, followed by doctors. Further practical studies are needed

    Analysis of preplatelets and their barbell platelet derivatives by imaging flow cytometry.

    No full text
    Circulating large "preplatelets" undergo fission via barbell platelet intermediates into two smaller, mature platelets. In this study, we determine whether preplatelets and/or barbells are equivalent to reticulated/immature platelets by using ImageStream flow cytometry and super-resolution microscopy. Immature platelets, preplatelets, and barbells were quantified in healthy and thrombocytopenic mice, healthy human volunteers, and patients with immune thrombocytopenia or undergoing chemotherapy. Preplatelets and barbells were 1.9% ± 0.18%/1.7% ± 0.48% (n = 6) and 3.3% ± 1.6%/0.5% ± 0.27% (n = 12) of total platelet counts in murine and human whole blood, respectively. Both preplatelets and barbells exhibited high expression of major histocompatibility complex class I with high thiazole orange and Mitotracker fluorescence. Tracking dye experiments confirmed that preplatelets transform into barbells and undergo fission ex vivo to increase platelet counts, with dependence on the cytoskeleton and normal mitochondrial respiration. Samples from antibody-induced thrombocytopenia in mice and patients with immune thrombocytopenia had increased levels of both preplatelets and barbells correlating with immature platelet levels. Furthermore, barbells were absent after chemotherapy in patients. In mice, in vivo biotinylation confirmed that barbells, but not all large platelets, were immature. This study demonstrates that a subpopulation of large platelets are immature preplatelets that can transform into barbells and undergo fission during maturation

    Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines

    No full text
    Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved

    Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines

    No full text
    Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved

    Anti-platelet factor 4 immunoglobulin G levels in vaccine-induced immune thrombocytopenia and thrombosis: Persistent positivity through 7 months.

    Get PDF
    Background Anti-platelet factor 4 (PF4) antibodies that activate platelets via FcγRIIA drive the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT). Evolution of these antibodies and their ability to activate platelets after initial treatment remains unknown. Objectives To assess how clinical and platelet parameters, anti-PF4 antibody levels, and patient serum reactivity changes during follow-up after VITT presentation. Methods We describe cases of seven discharged VITT patients that were followed from diagnosis up to 280 days (range 199-280) after vaccination. We measured anti-PF4 antibodies and PF4 levels in patient serum during follow-up and tested the ability of patient serum to activate healthy donor platelets and patient platelets over time. Results Anti-PF4 immunoglobulin G antibody levels are very high at diagnosis (0.9-2.6 OD) and remain relatively high (>1.0 OD) in all patients, except one treated with rituximab, at 7 months post vaccination. All patients were on direct oral anticoagulants throughout follow-up and no patients had recurrent thrombosis. Patients' platelets during follow-up have normal FcγRIIA levels and responsiveness to platelet agonists. Patient diagnostic serum strongly activated control platelets, either alone or with PF4. Most follow-up serum alone was weaker at stimulating donor and patient platelets. However, follow-up serum beyond 150 days still strongly activated platelets with PF4 addition in three patients. Patient serum PF4 levels were lower than controls at diagnosis but returned within normal range by day 50. Conclusions Explanations for reduced platelet activation during follow-up, despite similar total anti-PF4 antibody levels, remains unclear. Clinical implications of persistent anti-PF4 antibodies in VITT require further study
    corecore