842 research outputs found
Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey
We test and reject the claim of Segal et al. (1993) that the correlation of
redshifts and flux densities in a complete sample of IRAS galaxies favors a
quadratic redshift-distance relation over the linear Hubble law. This is done,
in effect, by treating the entire galaxy luminosity function as derived from
the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance
indicator; equivalently, we compare the flux density distribution of galaxies
as a function of redshift with predictions under different redshift-distance
cosmologies, under the assumption of a universal luminosity function. This
method does not assume a uniform distribution of galaxies in space. We find
that this test has rather weak discriminatory power, as argued by Petrosian
(1993), and the differences between models are not as stark as one might expect
a priori. Even so, we find that the Hubble law is indeed more strongly
supported by the analysis than is the quadratic redshift-distance relation. We
identify a bias in the the Segal et al. determination of the luminosity
function, which could lead one to mistakenly favor the quadratic
redshift-distance law. We also present several complementary analyses of the
density field of the sample; the galaxy density field is found to be close to
homogeneous on large scales if the Hubble law is assumed, while this is not the
case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros,
postscript also available at
http://www.astro.princeton.edu/~library/preprints/pop682.ps.g
Effect of root spacing on interpretation of blade penetration tests-full-scale physical modelling
The spatial distribution of plant roots is an important parameter when the stability of vegetated slopes is to be assessed. Previous studies in both laboratory and field conditions have shown that a penetrometer adapted with a blade-shaped tip can be used to detect roots from sudden drops in penetrometer resistance. Such drops can be related to root properties including diameter, stiffness and strength using simpleWinkler foundation models, thereby providing a field instrument for rapid quantification of root properties and distribution. While this approach has proved useful for measuring single widely-spaced roots, it has not previously been determined how the penetrometer response changes as a result of roots being in close proximity. Therefore in this study 1-g physical modelling (at 1:1 scale) was conducted to study the effect of vertical root spacing using horizontal, straight 3D-printed root analogues. Results showthatwhen roots are closely spaced, there is significant interaction between them, resulting in higher apparent root displacements to failure and an increased amount of energy being dissipated. This preliminary work shows that the interpretive models used to analyse the penetrometer trace require further development to account for root-soil-root interactions in densely rooted soil.</p
Comparison of new <i>in situ </i>root-reinforcement measuring devices to existing techniques
Mechanical root-reinforcement is difficult to quantify. Existing in-situ methods are cumbersome, while modelling requires parameters which are difficult to acquire. In this paper, two new in-situ measurement devices are introduced ('cork screw' and 'pin vane') and their performance is compared to field vane and laboratory direct shear strength measurements in fallow and rooted soil. Both new methods show a close correlation with field vane readings in fallow soil. Tests in reinforced soil show that both new methods can be installed without significant root disturbance. The simplicity of both new methods allows for practical in-situ use and both can be used to study soil stress-strain behaviour, thus addressing some major limitations in existing methodologies for characterising rooted soil.</p
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Recommended from our members
Modulation of UK lightning by heliospheric magnetic field polarity
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesnÊŒt greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40â60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity
Recommended from our members
Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence
The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47âČN,9°08âČW). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an
increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a LombâScargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps
We study crossover phenomena in a model of self-avoiding walks with
medium-range jumps, that corresponds to the limit of an -vector
spin system with medium-range interactions. In particular, we consider the
critical crossover limit that interpolates between the Gaussian and the
Wilson-Fisher fixed point. The corresponding crossover functions are computed
using field-theoretical methods and an appropriate mean-field expansion. The
critical crossover limit is accurately studied by numerical Monte Carlo
simulations, which are much more efficient for walk models than for spin
systems. Monte Carlo data are compared with the field-theoretical predictions
concerning the critical crossover functions, finding a good agreement. We also
verify the predictions for the scaling behavior of the leading nonuniversal
corrections. We determine phenomenological parametrizations that are exact in
the critical crossover limit, have the correct scaling behavior for the leading
correction, and describe the nonuniversal lscrossover behavior of our data for
any finite range.Comment: 43 pages, revte
"A few good men": Public sector audit in the Swan River Colony, 1828-1835
The appointment of the Auditor General to undertake public sector audit is the primary instrument used to safeguard public finances in most contemporary Westminster-based democracies. It is axiomatic that the independence of the Auditor General from executive government is a critical element in ensuring the effectiveness of the role, yet this separation is a relatively recent phenomenon. Those responsible for nineteenth century public sector audit in the Australian colonies operated in what would today be considered an unacceptable environment, with little, if any, independence from the executive arm of government. Yet, while several other Australian colonies suffered from the mismanagement of government finances, there is nothing to show that the Swan River Colony experienced much more than clerical errors and minor administrative oversights. In this article, we explore the extent to which satisfactory public financial management in the Swan River Colony occurred as a result of both good financial management systems (in the context of the era) and the appointment of competent and ethical administrators â âa few good menâ
- âŠ