23 research outputs found

    Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations

    No full text
    Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions

    No effect of oral ketone ester supplementation on exercise capacity in patients with McArdle disease and healthy controls:A randomized placebo-controlled cross-over study

    No full text
    Patients with glycogen storage disease type V (GSDV), also known as McArdle disease, have blocked glycogen breakdown due to myophosphorylase deficiency, leading to exercise intolerance, muscle pain, and risk of muscle damage. Blood‐derived ketone bodies (KBs) constitute an alternative energy source that could fuel the muscle independent of glycogenolysis. However, except for long‐time fasting or ketogenic dieting, KBs are present in low quantities. This led us to explore the effects of a drink containing exogenously produced KBs in the form of D‐β‐hydroxybutyrate esters (KE) on exercise capacity and metabolism in patients with GSDV. Eight GSDV patients and four healthy controls (HC) were included in this placebo‐controlled, cross‐over study where subjects were randomized to receive a KE drink with 395 mgKE/kg or placebo drink on two separate days 25 min before a submaximal cycle exercise test. The primary outcome was exercise capacity as indicated by heart rate response (HR) to exercise. Secondary outcomes included perceived exertion (PE) and measures of KB, carbohydrate, and fat metabolism during exercise. In GSDV, the KE drink vs. placebo increased plasma KBs and KB oxidation (p ≤ 0.0001) but did not improve exercise capacity as judged from HR (p = 0.120) and PE (p = 0.109). In addition, the KE drink lowered plasma glucose, free fatty acids, and lowered lipolytic rate and glucose rate of appearance compared with placebo. Similar results were found in the HC group. The present study indicates that an increase in KB oxidation by oral KE supplementation does not improve exercise capacity in GSDV possibly because of KB‐induced inhibition of lipolysis and liver glucose output. Thus, oral KE supplementation alone cannot be recommended as a treatment option for patients with GSDV
    corecore