21 research outputs found

    Environment, epigenetics and neurodegeneration: Focus on nutrition in Alzheimer's disease

    Get PDF
    Many different environmental factors (nutrients, pollutants, chemicals, physical activity, lifestyle, physical and mental stress) can modulate epigenetic markers in the developing and adult organism. Epigenetics, in turn, can cause and is associated with several neurodegenerative and aging-dependent human diseases. Alzheimer's disease certainly represents one of the most relevant neurodegenerative disorders due to its incidence and its huge socio-economic impact. Therefore, it is easy to understand why recent literature focuses on the epigenetic modifications associated with Alzheimer's disease and other neurodegenerative disorders. One of the most intriguing and, at the same time, worrying evidence is that even "mild" environmental factors (such as behavioral or physical stress) as well as the under-threshold exposure to pollutants and chemicals, can be effective. Finally, even mild nutrients disequilibria can result in long-lasting and functional alterations of many epigenetic markers, although they don't have an immediate acute effect. Therefore, we will probably have to re-define the current risk threshold for many factors, molecules and stresses. Among the many different environmental factors affecting the epigenome, nutrition represents one of the most investigated fields; the reasons are probably that each person interacts with nutrients and that, in turn, nutrients can modulate at molecular level the epigenetic biochemical pathways. The role that nutrition can exert in modulating epigenetic modifications in Alzheimer's disease will be discussed with particular emphasis on the role of B vitamins and DNA methylation

    S-adenosylmethionine and superoxide dismutase 1 synergistically counteract Alzheimer's disease features progression in tgCRND8 mice

    Get PDF
    Recent evidence emphasizes the role of dysregulated one-carbon metabolism in Alzheimer's Disease (AD). Exploiting a nutritional B-vitamin deficiency paradigm, we have previously shown that PSEN1 and BACE1 activity is modulated by one-carbon metabolism, leading to increased amyloid production. We have also demonstrated that S-adenosylmethionine (SAM) supplementation contrasted the AD-like features, induced by B-vitamin deficiency. In the present study, we expanded these observations by investigating the effects of SAM and SOD (Superoxide dismutase) association. TgCRND8 AD mice were fed either with a control or B-vitamin deficient diet, with or without oral supplementation of SAM + SOD. We measured oxidative stress by lipid peroxidation assay, PSEN1 and BACE1 expression by Real-Time Polymerase Chain Reaction (PCR), amyloid deposition by ELISA assays and immunohistochemistry. We found that SAM + SOD supplementation prevents the exacerbation of AD-like features induced by B vitamin deficiency, showing synergistic effects compared to either SAM or SOD alone. SAM + SOD supplementation also contrasts the amyloid deposition typically observed in TgCRND8 mice. Although the mechanisms underlying the beneficial effect of exogenous SOD remain to be elucidated, our findings identify that the combination of SAM + SOD could be carefully considered as co-adjuvant of current AD therapies

    S-Adenosylmethionine Prevents Oxidative Stress and Modulates Glutathione Metabolism in TgCRND8 Mice Fed a B-Vitamin Deficient Diet

    No full text
    Oxidative stress, altered glutathione levels, and hyperhomocysteinemia play critical roles in Alzheimer's disease. We studied the relationships between hyperhomocysteinemia, glutathione, and oxidative stress in TgCRND8 mice maintained in conditions of folate, B12, and B6 deficiency and the effect of S-adenosylmethionine supplementation. We found that hyperhomocysteinemia was correlated with increased reduced/oxidized brain glutathione ratio, with decreased glutathione S-transferase activity and increased lipid peroxidation. S-adenosylmethionine potentiated superoxide dismutase and glutathione S-transferase activity and restored altered brain glutathione and erythrocytes lipid peroxidation. These results underline the importance of S-adenosylmethionine as neuroprotective compound, acting both on methylation and oxidation metabolism

    PSEN1 promoter demethylation in hyperhomocysteinemic TgCRND8 mice is the culprit, not the consequence.

    No full text
    In recent years, in parallel with the growing awareness of the multifactorial nature of Late Onset Alzheimer's Disease, the possibility that epigenetic mechanisms could be involved in the onset and/or progression of the pathology assumed an increasingly intriguing and leading role in Alzheimer's research. Today, many scientific reports indicate the existence of an epigenetic drift during ageing, in particular in Alzheimer's subjects. At the same time, experimental evidences are provided with the aim to demonstrate the causative or consequential role of epigenetic mechanisms. Our research group was involved in the last ten years in studying DNA methylation, the main epigenetic modification, in relationship to altered one-carbon metabolism (namely high homocysteine and low B vitamins levels), in Alzheimer's experimental models. Our previous findings about the demethylation of Presenilin1 gene promoter in nutritionally-induced hyperhomocysteinemia in a transgenic mouse model clearly demonstrated that Presenilin1 is regulated by DNA methylation. One of the open questions raised by our studies was if the observed demethylation was solely due to the induced imbalance of one-carbon metabolism or could be a response to the massive deposition of amyloid plaques in transgenic mice. Here we analyzed old (10 months) mice under standard diet in order to evidence possible changes in Presenilin1 promoter methylation in transgenic (TgCRND8 mice, carrying a double-mutated human APP transgene) vs. wt mice (129Sv) after prolonged exposure to amyloid. We found no differences in Presenilin1 methylation despite a slight increase in gene expression; these results suggest that amyloid production is not responsible for Presenilin1 demethylation in TgCRND8 mice brain

    DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models

    No full text
    Late-onset Alzheimer's disease seems to be a multi-factorial disease with both genetic and non-genetic, environmental, possible causes. Recently, epigenomics is achieving a major role in Alzheimer's research due to its involvement in different molecular pathways leading to neurodegeneration. Among the different epigenetic modifications. DNA methylation is one of the most relevant to the disease. We previously demonstrated that presenilin1 (PSEN1), a gene involved in amyloidogenesis, is modulated by DNA methylation in neuroblastoma cells and Alzheimer's mice in an experimental model of nutritionally altered one-carbon metabolism. This alteration, obtained by nutritional deficiency of B vitamins (folate, B12 and B6) hampered S-adenosylmethionine (SAM)-dependent methylation reactions. The aim of the present paper was to investigate the regulation of DNA methylation machinery in response to hypomethylating (B vitamin deficiency) and hypermethylating (SAM supplementation) alterations of the one-carbon metabolism. We found that DNA methylases (DNMT1, 3a and 3b) and a putative demethylase (MBD2) were differently modulated, in line with the previously observed changes of PSEN1 methylation pattern in the same experimental conditions. (C) 2011 Elsevier Inc. All rights reserved

    B Vitamin Deficiency Promotes Tau Phosphorylation Through Regulation of GSK3 beta and PP2A

    No full text
    Neurofibrillary tangles (NFTs), composed of intracellular filamentous aggregates of hyperphosphorylated protein tau, are one of the pathological hallmarks of Alzheimer's disease (AD). Tau phosphorylation is regulated by the equilibrium between activities of its protein kinases and phosphatases; unbalance of these activities is proposed to be a reasonable causative factor to the disease process. Glycogen synthase kinase 3beta (GSK3beta) is one of the most important protein kinase in regulating tau phosphorylation; overexpression of active GSK3beta causes ADlike hyperphosphorylation of tau. Protein phosphatase 2A (PP2A) is the major phosphatase that dephosphorylates tau; it was demonstrated that highly conserved carboxyl-terminal sequence of PP2A C-subunit is a focal point for phosphatase regulation. This is the site of a reversible methyl esterification reaction that controls AB_{alpha}C heterotrimers formation. Here we demonstrate that GSK3beta and PP2A genes were upregulated by inhibiting methylation reactions through B vitamin deficiency. In this condition, methylated catalytic subunit PP2Ac was decreased, leading to reduced PP2A activity. By contrast, we observed GSK3beta protein increase and a modulation in phosphorylation sites that regulate GSK3beta activity. Therefore, one-carbon metabolism alteration seems to be a cause of deregulation of the equilibrium between GSK3beta and PP2A, leading to abnormal hyperphosphorylated tau
    corecore