2 research outputs found
Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane
Intracellular budding is a developmentally regulated type of cell division common to many fungi and protists. In Saccaromyces cerevisiae, intracellular budding requires the de novo assembly of membranes, the prospore membranes (PSMs) and occurs during spore formation in meiosis. Ssp1p is a sporulation-specific protein that has previously been shown to localize to secretory vesicles and to recruit the leading edge protein coat (LEP coat) proteins to the opening of the PSM. Here, we show that Ssp1p is a multidomain protein with distinct domains important for PI(4,5)P(2) binding, binding to secretory vesicles and inhibition of vesicle fusion, interaction with LEP coat components and that it is subject to sumoylation and degradation. We found non-essential roles for Ssp1p on the level of vesicle transport and an essential function of Ssp1p to regulate the opening of the PSM. Together, our results indicate that Ssp1p has a domain architecture that resembles to some extent the septin class of proteins, and that the regulated removal of Ssp1p from the PSM is the major step underlying cytokinesis in yeast sporulation
The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis
Precise control over organelle shapes is essential for cellular organization and morphogenesis. During yeast meiosis, prospore membranes (PSMs) constitute bell-shaped organelles that enwrap the postmeiotic nuclei leading to the cellularization of the mother cell's cytoplasm and to spore formation. Here, we analysed how the PSMs acquire their curved bell-shaped structure. We discovered that two antagonizing forces ensure PSM shaping and proper closure during cytokinesis. The Ssp1p-containing coat at the leading edge of the PSM generates a pushing force, which is counteracted by a novel pathway, the spore membrane-bending pathway (SpoMBe). Using genetics, we found that Sma2p and Spo1p, a phospholipase, as well as several GPI-anchored proteins belong to the SpoMBe pathway. They exert a force all along the membrane, responsible for membrane bending during PSM biogenesis and for PSM closure during cytokinesis. We showed that the SpoMBe pathway involves asymmetric distribution of Sma2p and does not involve a GPI-protein-containing matrix. Rather, repulsive forces generated by asymmetrically distributed and dynamically moving GPI-proteins are suggested as the membrane-bending principle