20 research outputs found

    Solid-state nuclear magnetic resonance in the rotating tilted frame

    Get PDF
    Recent methodological advances have made it possible to measure fine structure on the order of a few hertz in the nuclear magnetic resonance NMR spectra of quadrupolar nuclei in polycrystalline samples. Since quadrupolar couplings are often a significant fraction of the Zeeman coupling, a complete analysis of such experimental spectra requires a theoretical treatment beyond first-order. For multiple pulse NMR experiments, which may include sample rotation, the traditional density matrix approaches for treating higher-order effects suffer from the constraint that undesired fast oscillations i.e., multiples of the Zeeman frequency , which arise from allowed overtone transitions, can only be eliminated in numerical simulations by employing sampling rates greater than 2I times the Zeeman frequency. Here, we present a general theoretical approach for arbitrary spin I that implements an analytical "filtering" of undesired fast oscillations in the rotating tilted frame, while still performing an exact diagonalization. Alternatively, this approach can be applied using a perturbation expansion for the eigenvalues and eigenstates, such that arbitrary levels of theory can be explored. The only constraint in this approach is that the Zeeman interaction remains the dominant interaction. Using this theoretical framework, numerical simulations can be implemented without the need for a high sampling rate of observables and with significantly reduced computation times. Additionally, this approach provides a general procedure for focusing on the excitation and detection of both fundamental and overtone transitions. Using this approach we explore higher-order effects on a number of sensitivity and resolution issues with NMR of quadrupolar nuclei

    Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy

    Get PDF
    Ionic transport inside porous carbon electrodes underpins the storage of energy in supercapacitors and the rate at which they can charge and discharge, yet few studies have elucidated the materials properties that influence ion dynamics. Here we use in situ pulsed field gradient NMR spectroscopy to measure ionic diffusion in supercapacitors directly. We find that confinement in the nanoporous electrode structures decreases the effective self-diffusion coefficients of ions by over two orders of magnitude compared with neat electrolyte, and in-pore diffusion is modulated by changes in ion populations at the electrode/electrolyte interface during charging. Electrolyte concentration and carbon pore size distributions also affect in-pore diffusion and the movement of ions in and out of the nanopores. In light of our findings we propose that controlling the charging mechanism may allow the tuning of the energy and power performances of supercapacitors for a range of different applications

    In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    Get PDF
    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations

    Insights into Electrochemical Sodium Metal Deposition as Probed with <i>in Situ</i> <sup>23</sup>Na NMR

    No full text
    Sodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with <i>in situ</i> NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling. Two regimes for the electrochemical cycling of Na metal are apparent that have implications for the use of Na anodes: at low currents, the Na deposits are partially removed on reversing the current, while at high currents, there is essentially no removal of the deposits in the initial stages. At longer times, high currents show a significantly greater accumulation of deposits during cycling, again indicating a much lower efficiency of removal of these structures when the current is reversed

    Ion counting in supercapacitor electrodes using NMR spectroscopy

    Get PDF
    F-19 NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in-and ex-pore environments with an exchange rate in the order of tens of Hz. F-19 in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane) sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism

    Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon

    Get PDF
    A detailed understanding of ion adsorption within porous carbon is key to the design and improvement of electric double-layer capacitors, more commonly known as supercapacitors. In this work nuclear magnetic resonance (NMR) spectroscopy is used to study ion adsorption in porous carbide-derived carbons. These predominantly microporous materials have a tuneable pore size which enables a systematic study of the effect of pore size on ion adsorption. Multinuclear NMR experiments performed on the electrolyte anions and cations reveal two main environments inside the carbon. In-pore ions (observed at low frequencies) are adsorbed inside the pores, whilst ex-pore ions (observed at higher frequencies) are not adsorbed and are in large reservoirs of electrolyte between carbon particles. All our experiments were carried out in the absence of an applied electrical potential in order to assess the mechanisms related to ion adsorption without the contribution of electrosorption. Our results indicate similar adsorption behaviour for anions and cations. Furthermore, we probe the effect of sample orientation, which is shown to have a marked effect on the NMR spectra. Finally, we show that a C-13 -> H-1 cross polarisation experiment enables magnetisation transfer from the carbon architecture to the adsorbed species, allowing selective observation of the adsorbed ions and confirming our spectral assignments

    Real-Time NMR Studies of Electrochemical Double-Layer Capacitors

    Get PDF
    International audience11B NMR spectroscopy has been used to investigate the sorption of BF4– anions on a highly porous, high surface area carbon, and different binding sites have been identified. By implementing in situ NMR approaches, the migration of ions between the electrodes of the supercapacitors and changes in the nature of ion binding to the surface have been observed in real time

    Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via <sup>17</sup>O NMR and DFT Calculations

    No full text
    Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of <sup>17</sup>O NMR in the same materials has not yet been reported. In this work, we present a combined <sup>17</sup>O NMR and hybrid density functional theory study of the local O environments in Li<sub>2</sub>MnO<sub>3</sub>, a model compound for layered Li-ion batteries. After a simple <sup>17</sup>O enrichment procedure, we observed five resonances with large <sup>17</sup>O shifts ascribed to the Fermi contact interaction with directly bonded Mn<sup>4+</sup> ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the <sup>17</sup>O shifts of environments similar to the 4i and 8j sites in pristine Li<sub>2</sub>MnO<sub>3</sub>, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li<sub>2</sub>MnO<sub>3</sub> structure. From the ratio of the intensities of the different <sup>17</sup>O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying <sup>17</sup>O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides
    corecore