200 research outputs found
An internal splash: Levitation of falling spheres in stratified fluids
We experimentally explore the motion of falling spheres in strongly stratified fluids in which the fluid transitions from low density at the top to high density at the bottom and document an internal splash in which the falling sphere may reverse its direction of motion (from falling, to rising, to falling again) as it penetrates a region of strong density transition. We present measurements of the sphere’s velocity and exhibit nonmonotonic sphere velocity profiles connecting the maximum and minimum terminal velocities, matching earlier measurements [J. Fluid Mech. 381, 175 (1999)], but further exhibit the new levitation phenomenon. We give a physical explanation of this motion which necessarily couples the sphere motion with the stratified fluid, and vice versa, and supplement this with a simplified, reduced mathematical model involving a nonlinear system of ordinary differential equations which captures the nonmonotonic transition and agrees with the measuredvelocity profiles at all depths except those in the vicinity of the sharp transition for which the model deviates from the measured speeds. We repeat the experiments adjusting the distance between the camera and falling sphere thereby reducing the optical blur associated with the change in optical refractive index associated with the strong density transition. By directly measuring the residual optical distortion with a center plane, vertical ruler, we exhibit that the measuredvelocity profile within the transition layer is strongly sensitive to the details of the measured optical distortion, and show subsequent improved agreement between the measurement and the model. Through direct measurement of the nonlinear mapping between physical and imaged coordinates we document measuredvelocity error trends which may occur from inaccurately accounting for this optical distortion. We suggest strategies for correcting this localized measurement detail generally
Characterizing r-Process Sites through Actinide Production
© Published under licence by IOP Publishing Ltd. Of the variations in the elemental abundance patterns of stars enhanced with r-process elements, the variation in the relative actinide-To-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in order to determine whether these variations are due to natural differences in astrophysical sites, or due to the uncertain nuclear properties that are accessed in r-process sites. We find that variations between relative stellar actinide abundances is most likely astrophysical in nature, owing to how neutron-rich the ejecta from an r-process event may be. Furthermore, if an r-process site is capable of generating variations in the neutron-richness of its ejected material, then only one type of r-process site is needed to explain all levels of observed relative actinide enhancements
Early Clinical Experiences for Second-Year Student Pharmacists at an Academic Medical Center
Objective. To examine student outcomes associated with the Student Medication and Reconciliation Team (SMART) program, which was designed to provide second-year student pharmacists at the University of North Carolina (UNC) Eshelman School of Pharmacy direct patient care experience at UNC Medical Center
Recommended from our members
Correction: Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study
We have corrected this Article post-publication, because Dr. Cattaneo’s affiliation details were originally incorrect (she was affiliated with three institutions but is in fact only linked to one: Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia). These changes reflect in both the PDF and HTML versions of this Article
Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia
The combination of cytotoxic treatment with strategies for immune activation represents an attractive strategy for tumour therapy. Following reduction of high tumour burden by effective cytotoxic agents, two major immune-stimulating approaches are being pursued. First, innate immunity can be activated by monoclonal antibodies triggering antibody-dependent cellular cytotoxicity. Second, tumour-specific T cell responses can be generated by immunization of patients with peptides derived from tumour antigens and infused in soluble form or loaded onto dendritic cells. The choice of cytotoxic agents for such combinatory regimens is crucial since most substances such as fludarabine are considered immunosuppressive while others such as cyclophosphamide can have immunostimulatory activity. We tested in this study whether fludarabine and/or cyclophosphamide, which represent a very effective treatment regimen for chronic lymphocytic leukaemia, would interfere with a therapeutic strategy of T cell activation. Analysis of peripheral blood samples from patients prior and during fludarabine/cyclophosphamide therapy revealed rapid and sustained reduction of tumour cells but also of CD4+ and CD8+ T cells. This correlated with a significant cytotoxic activity of fludarabine/cyclophosphamide on T cells in vitro. Unexpectedly, T cells surviving fludarabine/cyclophosphamide treatment in vitro had a more mature phenotype, while fludarabine-treated T cells were significantly more responsive to mitogenic stimulation than their untreated counterparts and showed a shift towards TH1 cytokine secretion. In conclusion, fludarabine/cyclophosphamide therapy though inducing significant and relevant T cell depletion seems to generate a micromilieu suitable for subsequent T cell activation
A Simple Standard for Sharing Ontological Mappings (SSSOM).
Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec
- …