26 research outputs found
Fungal phytochrome chromophore biosynthesis at mitochondria
Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a “kiss-and-go” mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi
Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrial and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen, causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires a metabolic and morphological reprogramming in which the second messenger bis-(3' -5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signalling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P.aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal
Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrial and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen, causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires a metabolic and morphological reprogramming in which the second messenger bis-(3' -5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signalling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P.aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal
Proximity channeling during cyanobacterial phycoerythrobilin synthesis
Substrate channeling is a widespread mechanism in metabolic pathways to avoid decomposition of unstable intermediates, competing reactions, and to accelerate catalytic turnover. During the biosynthesis of light-harvesting phycobilins in cyanobacteria, two members of the ferredoxin-dependent bilin reductases are involved in the reduction of the open-chain tetrapyrrole biliverdin IXα to the pink pigment phycoerythrobilin. The first reaction is catalyzed by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase and produces the unstable intermediate 15,16-dihydrobiliverdin (DHBV). This intermediate is subsequently converted by phycoerythrobilin:ferredoxin oxidoreductase to the final product phycoerythrobilin. Although substrate channeling has been postulated already a decade ago, detailed experimental evidence was missing. Using a new on-column assay employing immobilized enzyme in combination with UV-Vis and fluorescence spectroscopy revealed that both enzymes transiently interact and that transfer of the intermediate is facilitated by a significantly higher binding affinity of DHBV toward phycoerythrobilin:ferredoxin oxidoreductase. Concluding from the presented data, the intermediate DHBV is transferred via proximity channeling
Efficient Phage-Mediated Pigment Biosynthesis in Oceanic Cyanobacteria
SummaryAlthough the oceanic cyanobacterium Prochlorococcus harvests light with a chlorophyll antenna [1–3] rather than with the phycobilisomes that are typical of cyanobacteria, some strains express genes that are remnants of the ancestral Synechococcus phycobilisomes [4]. Similarly, some Prochlorococcus cyanophages, which often harbor photosynthesis-related genes [5], also carry homologs of phycobilisome pigment biosynthesis genes [6, 7]. Here, we investigate four such genes in two cyanophages that both infect abundant Prochlorococcus strains [8]: homologs of heme oxygenase (ho1), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (pebA), ferredoxin (petF) in the myovirus P-SSM2, and a phycocyanobilin:ferredoxin oxidoreductase (pcyA) homolog in the myovirus P-SSM4. We demonstrate that the phage homologs mimic the respective host activities, with the exception of the divergent phage PebA homolog. In this case, the phage PebA single-handedly catalyzes a reaction for which uninfected host cells require two consecutive enzymes, PebA and PebB. We thus renamed the phage enzyme phycoerythrobilin synthase (PebS). This gene, and other pigment biosynthesis genes encoded by P-SSM2 (petF and ho1), are transcribed during infection, suggesting that they can improve phage fitness. Analyses of global ocean metagenomes show that PcyA and Ho1 occur in both cyanobacteria and their phages, whereas the novel PebS-encoding gene is exclusive to phages