113 research outputs found
The Causal Effect of an Intergroup Contact Intervention on Affective Polarization around Brexit:A Randomized Controlled Trial
With mounting evidence of the increase and harmful societal consequences of affective polarization, it is crucial to find ways of addressing it. This proof-of concept study tested the effects of a theory-based intervention on affective polarization in the context of Brexit. Sixty Leaver-Remainer dyads were randomized to engage in either a facilitated intergroup interaction or a control interaction, which was equivalent in structure and tone but was unrelated to Brexit identities. Different aspects of affective polarization were measured one month prior, immediately after, and one month after the intervention. Results indicate short-term intervention effects on intergroup affect and cognition, and willingness to compromise with the outgroup, but these mostly decayed over time. Evidence of selective attrition suggests that those with more extreme baseline opinions were more likely to drop out. The findings are of considerable importance for efforts to reduce affective polarization and highlight the challenge of engaging those who could benefit the most
Recommended from our members
Comparative analysis of CRISPR off-target discovery tools following ex vivo editing of CD34+ hematopoietic stem and progenitor cells.
While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA
Vasospasm in children with traumatic brain injury
To determine the incidence of vasospasm in children who have suffered moderate to severe traumatic brain injury.
A prospective observational pilot study in a 24-bed pediatric intensive care unit was performed. Twenty-two children aged 7 months to 14 years with moderate to severe traumatic brain injury as indicated by Glasgow Coma Score ≤12 and abnormal head imaging were enrolled. Transcranial Doppler ultrasound was performed to identify and follow vasospasm. Patients with a flow velocity in the middle cerebral artery (MCA) >120 cm/s were considered to have vasospasm by criterion A. If flow velocity in the MCA was >120 cm/s and the Lindegaard ratio was >3, vasospasm was considered to be present by criterion B. Patients with basilar artery (BA) flow velocity >90 cm/s met criteria for vasospasm in the posterior circulation (criterion C).
In the MCA, 45.5% of patients developed vasospasm based on criterion A and 36.3% developed vasospasm based on criterion B. A total of 18.2% of patients developed vasospasm in the BA by criterion C. Typical day of onset of vasospasm was hospital day 2–3. Duration of vasospasm in the anterior circulation was 4 ± 2 days based on criteria A and 3 ± 1 days based on criteria B. Vasospasm in the posterior circulation persisted for 2 ± 1 days.
Using the adult criteria outlined above to diagnose vasospasm, a significant proportion of pediatric patients who have suffered moderate to severe traumatic brain injury develop vasospasm during the course of their treatment
Diagnostic test accuracy in longitudinal study settings: theoretical approaches with use cases from clinical practice
Objectives
In this study, we evaluate how to estimate diagnostic test accuracy (DTA) correctly in the presence of longitudinal patient data (ie, repeated test applications per patient).
Study Design and Setting
We used a nonparametric approach to estimate the sensitivity and specificity of three tests for different target conditions with varying characteristics (ie, episode length and disease-free intervals between episodes): 1) systemic inflammatory response syndrome (n = 36), 2) depression (n = 33), and 3) epilepsy (n = 30). DTA was estimated on the levels ‘time’, ‘block’, and ‘patient-time’ for each diagnosis, representing different research questions. The estimation was conducted for the time units per minute, per hour, and per day.
Results
A comparison of DTA per and across use cases showed variations in the estimates, which resulted from the used level, the time unit, the resulting number of observations per patient, and the diagnosis-specific characteristics. Intra- and inter-use-case comparisons showed that the time-level had the highest DTA, particularly the larger the time unit, and that the patient-time-level approximated 50% sensitivity and specificity.
Conclusion
Researchers need to predefine their choices (ie, estimation levels and time units) based on their individual research aims, estimands, and diagnosis-specific characteristics of the target outcomes to make sure that unbiased and clinically relevant measures are communicated. In cases of uncertainty, researchers could report the DTA of the test using more than one estimation level and/or time unit
Clinical and Histologic Evaluation of the Hysterotomy Site and Fetal Membranes after Open Fetal Surgery for Fetal Spina Bifida Repair
INTRODUCTION Among the risks associated with open fetal surgery, myometrium and fetal membrane issues are vexing problems since they may lead to uterine dehiscence or preterm premature rupture of membranes resulting in uterine rupture or preterm birth or both. The aim of this study was to examine whether stapled and sutured hysterotomy scars demonstrate partial or complete healing. METHODS Hysterotomy sites after open fetal surgery were clinically evaluated in 36 women during Caesarean section, classified into the categories intact, thin, and partially or completely dehiscent, then completely excised and histologically analyzed in 25 cases. The histological examination focused on wound healing of myometrium and fetal membranes. RESULTS The myometrium was intact, thin, and partially or completely dehiscent in 33, 58, and 9%, respectively. The interval between myelomeningocele repair and delivery did not correlate with the healing process. The myometrium showed a reparative zone (scar) with adjacent avital myometrium tissue, fibrosis, and inflammation with foreign body reaction. The intact myometrium was below 1 mm thickness in 56%. All fetal membranes showed complete dehiscence; in 41% they were completely avital. CONCLUSION Our study provides evidence that the myometrium shows scarring with substantial thinning or dehiscence. Fetal membranes do not heal spontaneously. In order to prevent uterine rupture in subsequent pregnancies, we recommend the hysterotomy site to be completely excised after birth
Identification of preexisting adaptive immunity to Cas9 proteins in humans
The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials
Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells
β-Thalassemia pathology is due not only to loss of β-globin (HBB), but also to erythrotoxic accumulation and aggregation of the β-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in β-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize β-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing β-thalassemia
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery
Both mental rotation (MR) and motor imagery (MI) involve an internalization of movement within motor and parietal cortex. Transcranial magnetic stimulation (TMS) techniques allow for a task-dependent investigation of the interhemispheric interaction between these areas. We used image-guided dual-coil TMS to investigate interactions between right inferior parietal lobe (rIPL) and left primary motor cortex (M1) in 11 healthy participants. They performed MI (right index-thumb pinching in time with a 1 Hz metronome) or hand MR tasks, while motor evoked potentials (MEPs) were recorded from right first dorsal interosseous. At rest, rIPL conditioning 6 ms prior to M1 stimulation facilitated MEPs in all participants, whereas this facilitation was abolished during MR. While rIPL conditioning 12 ms prior to M1 stimulation had no effect on MEPs at rest, it suppressed corticomotor excitability during MI. These results support the idea that rIPL forms part of a distinct inhibitory network that may prevent unwanted movement during imagery tasks
- …