2 research outputs found
Seasonal Dynamics of Fruit Flies (Diptera: Drosophilidae) in Natural Parks of Moscow City, Russia
The insect fauna of natural parks in large cities has not been sufficiently studied in Russia. This study represents the first investigation of the seasonal dynamics and species diversity of Drosophilidae in Moscow city. Traps with fermenting liquid were placed on the ground under trees to collect flies from four natural park sites between early May and late September from 2021 to 2023. A total of 26,420 individuals belonging to 11 genera and 33 drosophilid species were identified, with 21 species from 6 genera being new to the fauna of Moscow. Drosophila obscura Fll., D. phalerata Mg., and D. testacea Roser were the most abundant species in the traps. Peaks in the abundance of drosophilids varied between years, but the lowest abundance was always observed in May. In 2022, the highest number of flies was collected (9604 specimens), with slightly fewer in 2023 (8496 specimens), and even fewer in 2021 (8320 specimens). In 2022, the highest species diversity of drosophilids was also recorded—33 species—while 28 species were found in both 2021 and 2023. The high variability in the abundance of individual drosophila species obscures the differences between the studied years due to the effects of the “Month” and “Site” factors. The diversity metrics exhibit similar patterns among drosophila communities inhabiting comparable biotopes. Specific climatic factors, such as the temperature and precipitation, impact the species abundance and community diversity indices primarily through their effects on the preimaginal stages of drosophila development. For several species, the population dynamics in the spring, post-hibernation, are influenced by the conditions preceding winter
Iron metabolic pathways in the processes of sponge plasticity.
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFÎşB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species