8 research outputs found
A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury
Background: Complete or incomplete spinal cord injury (SCI) results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking. Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards. Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks. Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients
Reorganization of brain networks after spinal cord injury: a qualitative synthesis of the literature
Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury
Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right) and received the higher inflow (left) among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558
Wireless Brain-Robot Interface: User Perception and Performance Assessment of Spinal Cord Injury Patients
Patients suffering from life-changing disability due to Spinal Cord Injury (SCI) increasingly benefit from assistive robotics technology. The field of brain-computer interfaces (BCIs) has started to develop mature assistive applications for those patients. Nonetheless, noninvasive BCIs still lack accurate control of external devices along several degrees of freedom (DoFs). Unobtrusiveness, portability, and simplicity should not be sacrificed in favor of complex performance and user acceptance should be a key aim among future technological directions. In our study 10 subjects with SCI (one complete) and 10 healthy controls were recruited. In a single session they operated two anthropomorphic 8-DoF robotic arms via wireless commercial BCI, using kinesthetic motor imagery to perform 32 different upper extremity movements. Training skill and BCI control performance were analyzed with regard to demographics, neurological condition, independence, imagery capacity, psychometric evaluation, and user perception. Healthy controls, SCI subgroup with positive neurological outcome, and SCI subgroup with cervical injuries performed better in BCI control. User perception of the robot did not differ between SCI and healthy groups. SCI subgroup with negative outcome rated Anthropomorphism higher. Multi-DoF robotics control is possible by patients through commercial wireless BCI. Multiple sessions and tailored BCI algorithms are needed to improve performance
Atomic Force Microscope Nanoindentation Analysis of Diffuse Astrocytic Tumor Elasticity: Relation with Tumor Histopathology
This study aims to investigate the influence of isocitrate dehydrogenase gene family (IDH) mutations, World Health Organization (WHO) grade, and mechanical preconditioning on glioma and adjacent brain elasticity through standard monotonic and repetitive atomic force microscope (AFM) nanoindentation. The elastic modulus was measured ex vivo on fresh tissue specimens acquired during craniotomy from the tumor and the peritumoral white matter of 16 diffuse glioma patients. Linear mixed-effects models examined the impact of tumor traits and preconditioning on tissue elasticity. Tissues from IDH-mutant cases were stiffer than those from IDH-wildtype ones among anaplastic astrocytoma patients (p = 0.0496) but of similar elasticity to IDH-wildtype cases for diffuse astrocytoma patients (p = 0.480). The tumor was found to be non-significantly softer than white matter in anaplastic astrocytomas (p = 0.070), but of similar elasticity to adjacent brain in diffuse astrocytomas (p = 0.492) and glioblastomas (p = 0.593). During repetitive indentation, both tumor (p = 0.002) and white matter (p = 0.003) showed initial stiffening followed by softening. Stiffening was fully reversed in white matter (p = 0.942) and partially reversed in tumor (p = 0.015). Tissue elasticity comprises a phenotypic characteristic closely related to glioma histopathology. Heterogeneity between patients should be further explored
European survey on neurosurgical management of primary central nervous system lymphomas and preoperative corticosteroid therapy
Introduction: Preoperative corticosteroid therapy (CST) is common in primary central nervous system lymphoma (PCNSL) and may complicate histopathological diagnosis. There is an ongoing debate on the best management after preoperative CST. Research question: We aimed to survey how different European neurosurgical units treat PCNSL patients after preoperative CST. Methods: An English-language survey consisting of 21 questions addressing the management of patients with suspected PCNSL and preoperative CST was sent to European hospitals. The survey also included three clinical cases to assess the decision-making process in a clinical setting. Results: The survey was completed by 74 European hospitals. There was no clear consensus on how to treat a patient with PCNSL after CST. Accordingly, 24.3% responded that they would generally defer surgery regardless of a possible radiological response, 47.3% would defer surgery only if there is regression in preoperative MRI and the remaining 28.4% would defer surgery only if the tumor had completely vanished. Furthermore, there were distinct discrepancies in responses of neurosurgical units regarding their general management approach and their case-based decision in the three example cases. The results of our survey also showed regional differences and differences in treatment decisions between high-, intermediate- and low-volume centers. Discussion and conclusion: There was no clear consensus on how to treat patients with suspected PCNSL and preoperative CST. Furthermore, most centers also showed inconsistencies in their responses regarding their general approach as well as individual patient treatment. More high-quality evidence-based recommendations are needed to improve consensus and thus patient care
Chemotherapy and diffuse low-grade gliomas: a survey within the European Low-Grade Glioma Network
International audienceBACKGROUND:Diffuse low-grade gliomas (DLGGs) are rare and incurable tumors. Whereas maximal safe, functional-based surgical resection is the first-line treatment, the timing and choice of further treatments (chemotherapy, radiation therapy, or combined treatments) remain controversial.METHODS:An online survey on the management of DLGG patients was sent to 28 expert centers from the European Low-Grade Glioma Network (ELGGN) in May 2015. It contained 40 specific questions addressing the modalities of use of chemotherapy in these patients.RESULTS:The survey demonstrated a significant heterogeneity in practice regarding the initial management of DLGG patients and the use of chemotherapy. Interestingly, radiation therapy combined with the procarbazine, CCNU (lomustine), and vincristine regimen has not imposed itself as the gold-standard treatment after surgery, despite the results of the Radiation Therapy Oncology Group 9802 study. Temozolomide is largely used as first-line treatment after surgical resection for high-risk DLGG patients, or at progression.CONCLUSIONS:The heterogeneity in the management of patients with DLGG demonstrates that many questions regarding the postoperative strategy and the use of chemotherapy remain unanswered. Our survey reveals a high recruitment potential within the ELGGN for retrospective or prospective studies to generate new data regarding these issues