1,401 research outputs found

    Insight into the Thermodynamic Structure of Blowing Snow Layers in Antarctica from Dropsonde and CALIPSO Measurements

    Get PDF
    Blowing snow is a frequent and ubiquitous phenomenon over most over Antarctica. The transport and sublimation of blowing snow are important for the mass balance of the Antarctic ice sheet and the latter is a major contributor to the hydrological cycle in high latitude regions. While much is known about blowing snow from surface observations, our knowledge of the thermodynamic structure of deep blowing snow layers is lacking. Here dropsonde measurements are used to investigate the temperature, moisture and wind structure of deep blowing snow layers over Antarctica. The temperature lapse rate within the blowing snow layer is found to be at times close to dry adiabatic and on average between dry and moist adiabatic. Initiation of blowing snow causes the surface temperature to increase to a degree proportional to the depth of the blowing snow layer. The relative humidity is generally largest near the surface (but less than 100%) and decreases with height reaching a minimum near the top of the layer. These findings are at odds with accepted theory which assumes blowing snow sublimation will cool and eventually saturate the layer. The observations support the conclusion that high levels of wind shear induced turbulence causes mixing and entrainment of warmer and drier air from above the blowing snow layer which suppresses humidity and produces the observed well-mixed temperature structure within the layer. The results may have important consequences for Antarctic ice sheet mass balance and the moisture budget of the atmosphere in high latitudes

    A bee in the corridor: regulating the optic flow on one side

    Get PDF
    International audienceTo work out the information flow underlying the honeybee's anti-collision system, we performed a frame-by-frame analysis of the trajectories of individual bees (Apis Mellifera) flying in a wide outdoor flight tunnel. Forward speed Vx and distance D to one of the two walls happen to be proportional to each other, attesting that the angular velocity Vx/D (Optic Flow, OF) of the image of that same wall is held constant. Like the landing bee holding the downward OF constant (Srinivasan et al. 1996), the bee holds either the left or right OF constant. The bee's behaviour is well accounted for by a lateral optic flow regulator scheme. Simulations showed that this scheme can make a (fully actuated) hovercraft automatically adjust its distance to a wall by regulating the OF on one side (Serres et al., IEEE Biorob 2006)

    Reducing connectivity by using cortical modular bands

    Get PDF
    The way information is represented and processed in a neural network may have important consequences on its computational power and complexity. Basically, information representation refers to distributed or localist encoding and information processing refers to schemes of connectivity that can be complete or minimal. In the past, theoretical and biologically inspired approaches of neural computation have insisted on complementary views (respectively distributed and complete versus localist and minimal) with complementary arguments (complexity versus expressiveness). In this paper, we report experiments on biologically inspired neural networks performing sensorimotor coordination that indicate that a localist and minimal view may have good performances if some connectivity constraints (also coming from biological inspiration) are respected

    Summer Drivers of Atmospheric Variability Affecting Ice Shelf Thinning in the Amundsen Sea Embayment, West Antarctica

    Get PDF
    Satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using the Weather Research and Forecasting model are used to understand how regional and large-scale atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf edge). El Nino episodes are associated with an increase in surface melt but do not have a statistically significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting, although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the continental shelf edge. The projected future increase in El Nino episodes and positive SAM could therefore increase the risk of disintegration of West Antarctic ice shelves

    Status and new operation modes of the versatile VLT/NACO

    Full text link
    This paper aims at giving an update on the most versatile adaptive optics fed instrument to date, the well known and successful NACO . Although NACO is only scheduled for about two more years at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more requested for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.Comment: 10 pages, 7 figures, SPIE 2010 Astronomical Instrumentation Proceedin

    Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography

    Get PDF
    Terahertz (THz) imaging is increasingly used in the cultural heritage field. In particular, continuous wave (CW) and low frequency THz is attracting more attention. The first application of the THz technique inherent to the cultural heritage field dates back 10 years ago. Since 2006, tangible improvements have been conducted in the refinement of the technique, with the aim to produce clear maps useful for any art restorer. In this paper, a CW THz (0.1 THz) imaging system was used to inspect paintings on canvas both in reflection and in transmission modes. In particular, two paintings were analyzed: in the first one, similar materials and painting execution of the original artwork were used, while in the second one, the canvas layer is slightly different. Flash thermography was used herein together with the THz method in order to observe the differences in results for the textile support materials. A possible application of this method for the detection of artwork forgery requires some parameterization and analysis of various materials or thickness influence which will be addressed in a future study. In this work, advanced image processing techniques including principal component thermography (PCT) and partial least squares thermography (PLST) were used to process the infrared data. Finally, a comparison of CW THz and thermographic results was conducted

    Power laws in microrheology experiments on living cells: comparative analysis and modelling

    Full text link
    We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a micrometric bead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(ω)G_e(\omega) is retrieved. Both J(t)J(t) and Ge(ω)G_e(\omega) exhibit power law behavior: J(t)=A(t/t0)αJ(t)= A(t/t_0)^\alpha and Gˉe(ω)=ˉG0(ω/ω0)α\bar G_e(\omega)\bar = G_0 (\omega/\omega_0)^\alpha, with the same exponent α0.2\alpha\approx 0.2. This power law behavior is very robust ; α\alpha is distributed over a narrow range, and shows almost no dependance on the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical length scale of the experiment. On the contrary, the prefactors A0A_0 and G0G_0appear very sensitive to these parameters. Whereas the exponents α\alpha are normally distributed over the cell population, the prefactors A0A_0 and G0G_0 follow a log-normal repartition. These results are compared with other data published in the litterature. We propose a global interpretation, based on a semi-phenomenological model, which involves a broad distribution of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the largest response time in the cytoskeletal network: τm1000\tau_m \approx 1000 s.Comment: 47 pages, 14 figures // v2: PDF file is now Acrobat Reader 4 (and up) compatible // v3: Minor typos corrected - The presentation of the model have been substantially rewritten (p. 17-18), in order to give more details - Enhanced description of protocols // v4: Minor corrections in the text : the immersion angles are estimated and not measured // v5: Minor typos corrected. Two references were clarifie

    Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Get PDF
    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations
    corecore