9 research outputs found

    Radiation from accelerated perfect or dispersive mirrors following prescribed relativistic asymptotically inertial trajectories

    Get PDF
    We address the question of radiation emission from both perfect and dispersive mirrors following prescribed relativistic trajectories. The trajectories considered are asymptotically inertial: the mirror starts from rest and eventually reverts to motion at uniform velocity. This enables us to provide a description in terms of in and out states. We calculate exactly the Bogolubov alpha and beta coefficients for a specific form of the trajectory, and stress the analytic properties of the amplitudes and the constraints imposed by unitarity. A formalism for the description of emission of radiation from a dispersive mirror is presented.Comment: 7 figure

    Particle detectors, geodesic motion, and the equivalence principle

    Full text link
    It is shown that quantum particle detectors are not reliable probes of spacetime structure. In particular, they fail to distinguish between inertial and non-inertial motion in a general spacetime. To prove this, we consider detectors undergoing circular motion in an arbitrary static spherically symmetric spacetime, and give a necessary and sufficient condition for the response function to vanish when the field is in the static vacuum state. By examining two particular cases, we show that there is no relation, in general, between the vanishing of the response function and the fact that the detector motion is, or is not, geodesic. In static asymptotically flat spacetimes, however, all rotating detectors are excited in the static vacuum. Thus, in this particular case the static vacuum appears to be associated with a non-rotating frame. The implications of these results for the equivalence principle are considered. In particular, we discuss how to properly formulate the principle for particle detectors, and show that it is satisfied.Comment: 14 pages. Revised version, with corrections; added two references. Accepted for publication in Class. Quantum Gra
    corecore