6,523 research outputs found
Line-Recovery by Programmable Particles
Shape formation has been recently studied in distributed systems of
programmable particles. In this paper we consider the shape recovery problem of
restoring the shape when of the particles have crashed. We focus on the
basic line shape, used as a tool for the construction of more complex
configurations.
We present a solution to the line recovery problem by the non-faulty
anonymous particles; the solution works regardless of the initial distribution
and number of faults, of the local orientations of the non-faulty
entities, and of the number of non-faulty entities activated in each round
(i.e., semi-synchronous adversarial scheduler)
Meeting in a Polygon by Anonymous Oblivious Robots
The Meeting problem for searchers in a polygon (possibly with
holes) consists in making the searchers move within , according to a
distributed algorithm, in such a way that at least two of them eventually come
to see each other, regardless of their initial positions. The polygon is
initially unknown to the searchers, and its edges obstruct both movement and
vision. Depending on the shape of , we minimize the number of searchers
for which the Meeting problem is solvable. Specifically, if has a
rotational symmetry of order (where corresponds to no
rotational symmetry), we prove that searchers are sufficient, and
the bound is tight. Furthermore, we give an improved algorithm that optimally
solves the Meeting problem with searchers in all polygons whose
barycenter is not in a hole (which includes the polygons with no holes). Our
algorithms can be implemented in a variety of standard models of mobile robots
operating in Look-Compute-Move cycles. For instance, if the searchers have
memory but are anonymous, asynchronous, and have no agreement on a coordinate
system or a notion of clockwise direction, then our algorithms work even if the
initial memory contents of the searchers are arbitrary and possibly misleading.
Moreover, oblivious searchers can execute our algorithms as well, encoding
information by carefully positioning themselves within the polygon. This code
is computable with basic arithmetic operations, and each searcher can
geometrically construct its own destination point at each cycle using only a
compass. We stress that such memoryless searchers may be located anywhere in
the polygon when the execution begins, and hence the information they initially
encode is arbitrary. Our algorithms use a self-stabilizing map construction
subroutine which is of independent interest.Comment: 37 pages, 9 figure
Diabetic kidney disease. new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on "the natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function"
Recent epidemiological studies have disclosed heterogeneity in diabetic kidney disease (DKD). In addition to the classical albuminuric phenotype, two new phenotypes have emerged, i.e., “nonalbuminuric renal impairment” and “progressive renal decline”, suggesting that DKD progression toward end-stage kidney disease in diabetic patients may occur through two distinct pathways heralded by a progressive increase in albuminuria and decline in renal function independent of albuminuria, respectively. Besides the natural history of DKD, also the management of hyperglycemia in patients with type 2 diabetes and reduced renal function has profoundly changed in the last two decades. New anti-hyperglycemic drugs have become available for treatment of these individuals and the lowest estimated glomerular filtration rate safety thresholds for some of the old agents have been reconsidered. This joint document of the Italian Diabetes Society (SID) and the Italian Society of Nephrology (SIN) reviews the natural history of DKD in the light of the recent epidemiological literature and provides updated recommendations on anti-hyperglycemic treatment with non-insulin agents in DKD patients
Interstitial granulomatous dermatitis due to borreliosis
3Interstitial granulomatous dermatitis (IGD) is a rare dermatosis of unknown cause with characteristic histopathological features and variable clinical expression. [1] It has been associated with systemic diseases which include rheumatoid arthritis, lupus erythematosus, autoimmune thyroiditis, carcinoma, infections and drug intake. It has recently been proposed that interstitial granulomatous dermatitis could be a cutaneous manifestation of Lyme borreliosis in Borrelia burgdorferi endemic areas. [2],[3],[4] We report a similar case below.openopenDI MEO, N.; Stinco, G.; Trevisan, G.DI MEO, Nicola; Stinco, G.; Trevisan, Giust
SARS-CoV2 vaccination adverse events trend in Italy. A retrospective interpretation of the last year (december 2020-eptember 2021)
At the end of 2020, a vaccination campaign against COVID-19 was launched. In 2021, legal obligations for health workers, as well as specific regulations for all workers, were introduced. The global SARS-CoV-2 pandemic was followed by epochal changes in life, school, and work habits in Italy. Therefore, the pharmacovigilance work currently being conducted in Italy by the AIFA concerning the recording and analysing of adverse reactions related to the use of vaccines has proved to be very important. The latest report, including a period of 10 months from December 2020 to September 2021, has allowed us to combine the results received so far, and to compare the safety of all vaccines currently available in Italy. The results of this analysis are highly encouraging and reveal the statistical reliability of the safety of the COVID-19 vaccines currently used in Italy. The dissemination of these findings could increase the public's awareness of vaccines and their ability to make free and informed choices concerning vaccination. The potential increase in the Italian population's adherence to the vaccination campaign could ultimately be a decisive factor in achieving herd immunity and the final resolution of the pandemic
A Rupestrian Algorithm
Deciphering recently discovered cave paintings by the Astracinca, an egalitarian leaderless society flourishing in the 3rd millennium BCE, we present and analyze their shamanic ritual for forming new colonies. This ritual can actually be used by systems of anonymous mobile finite-state computational entities located and operating in a grid to solve the line recovery problem, a task that has both self-assembly and flocking requirements. The protocol is totally decentralized, fully concurrent, provably correct, and time optimal
TuringMobile: A Turing Machine of Oblivious Mobile Robots with Limited Visibility and Its Applications
In this paper we investigate the computational power of a set of mobile robots with limited visibility. At each iteration, a robot takes a snapshot of its surroundings, uses the snapshot to compute a destination point, and it moves toward its destination. Each robot is punctiform and memoryless, it operates in R^m, it has a local reference system independent of the other robots\u27 ones, and is activated asynchronously by an adversarial scheduler. Moreover, the robots are non-rigid, in that they may be stopped by the scheduler at each move before reaching their destination (but are guaranteed to travel at least a fixed unknown distance before being stopped).
We show that despite these strong limitations, it is possible to arrange 3m+3k of these weak entities in R^m to simulate the behavior of a stronger robot that is rigid (i.e., it always reaches its destination) and is endowed with k registers of persistent memory, each of which can store a real number. We call this arrangement a TuringMobile. In its simplest form, a TuringMobile consisting of only three robots can travel in the plane and store and update a single real number. We also prove that this task is impossible with fewer than three robots.
Among the applications of the TuringMobile, we focused on Near-Gathering (all robots have to gather in a small-enough disk) and Pattern Formation (of which Gathering is a special case) with limited visibility. Interestingly, our investigation implies that both problems are solvable in Euclidean spaces of any dimension, even if the visibility graph of the robots is initially disconnected, provided that a small amount of these robots are arranged to form a TuringMobile. In the special case of the plane, a basic TuringMobile of only three robots is sufficient
- …