26,278 research outputs found

    Behavioral Equivalences

    Get PDF
    Beahvioral equivalences serve to establish in which cases two reactive (possible concurrent) systems offer similar interaction capabilities relatively to other systems representing their operating environment. Behavioral equivalences have been mainly developed in the context of process algebras, mathematically rigorous languages that have been used for describing and verifying properties of concurrent communicating systems. By relying on the so called structural operational semantics (SOS), labelled transition systems, are associated to each term of a process algebra. Behavioral equivalences are used to abstract from unwanted details and identify those labelled transition systems that react ā€œsimilarlyā€ to external experiments. Due to the large number of properties which may be relevant in the analysis of concurrent systems, many different theories of equivalences have been proposed in the literature. The main contenders consider those systems equivalent that (i) perform the same sequences of actions, or (ii) perform the same sequences of actions and after each sequence are ready to accept the same sets of actions, or (iii) perform the same sequences of actions and after each sequence exhibit, recursively, the same behavior. This approach leads to many different equivalences that preserve significantly different properties of systems

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Refinement of a previous hypothesis of the Lyapunov analysis of isotropic turbulence

    Full text link
    The purpose of this brief comunication is to improve a hypothesis of the previous work of the author (de Divitiis, Theor Comput Fluid Dyn, doi:10.1007/s00162-010-0211-9) dealing with the finite--scale Lyapunov analysis of isotropic turbulence. There, the analytical expression of the structure function of the longitudinal velocity difference Ī”ur\Delta u_r is derived through a statistical analysis of the Fourier transformed Navier-Stokes equations, and by means of considerations regarding the scales of the velocity fluctuations, which arise from the Kolmogorov theory. Due to these latter considerations, this Lyapunov analysis seems to need some of the results of the Kolmogorov theory. This work proposes a more rigorous demonstration which leads to the same structure function, without using the Kolmogorov scale. This proof assumes that pair and triple longitudinal correlations are sufficient to determine the statistics of Ī”ur\Delta u_r, and adopts a reasonable canonical decomposition of the velocity difference in terms of proper stochastic variables which are adequate to describe the mechanism of kinetic energy cascade.Comment: 6 page
    • ā€¦
    corecore