8 research outputs found

    A Hybrid Deep Reinforcement Learning and Optimal Control Architecture for Autonomous Highway Driving

    No full text
    Autonomous vehicles in highway driving scenarios are expected to become a reality in the next few years. Decision-making and motion planning algorithms, which allow autonomous vehicles to predict and tackle unpredictable road traffic situations, play a crucial role. Indeed, finding the optimal driving decision in all the different driving scenarios is a challenging task due to the large and complex variability of highway traffic scenarios. In this context, the aim of this work is to design an effective hybrid two-layer path planning architecture that, by exploiting the powerful tools offered by the emerging Deep Reinforcement Learning (DRL) in combination with model-based approaches, lets the autonomous vehicles properly behave in different highway traffic conditions and, accordingly, to determine the lateral and longitudinal control commands. Specifically, the DRL-based high-level planner is responsible for training the vehicle to choose tactical behaviors according to the surrounding environment, while the low-level control converts these choices into the lateral and longitudinal vehicle control actions to be imposed through an optimization problem based on Nonlinear Model Predictive Control (NMPC) approach, thus enforcing continuous constraints. The effectiveness of the proposed hierarchical architecture is hence evaluated via an integrated vehicular platform that combines the MATLAB environment with the SUMO (Simulation of Urban MObility) traffic simulator. The exhaustive simulation analysis, carried out on different non-trivial highway traffic scenarios, confirms the capability of the proposed strategy in driving the autonomous vehicles in different traffic scenarios

    A Forward-Collision Warning System for Electric Vehicles: Experimental Validation in Virtual and Real Environment

    No full text
    Driver behaviour and distraction have been identified as the main causes of rear end collisions. However a promptly issued warning can reduce the severity of crashes, if not prevent them completely. This paper proposes a Forward Collision Warning System (FCW) based on information coming from a low cost forward monocular camera for low end electric vehicles. The system resorts to a Convolutional Neural Network (CNN) and does not require the reconstruction of a complete 3D model of the surrounding environment. Moreover a closed-loop simulation platform is proposed, which enables the fast development and testing of the FCW and other Advanced Driver Assistance Systems (ADAS). The system is then deployed on embedded hardware and experimentally validated on a test track

    On-Board Road Friction Estimation Technique for Autonomous Driving Vehicle-Following Maneuvers

    No full text
    In recent years, autonomous vehicles and advanced driver assistance systems have drawn a great deal of attention from both research and industry, because of their demonstrated benefit in reducing the rate of accidents or, at least, their severity. The main flaw of this system is related to the poor performances in adverse environmental conditions, due to the reduction of friction, which is mainly related to the state of the road. In this paper, a new model-based technique is proposed for real-time road friction estimation in different environmental conditions. The proposed technique is based on both bicycle model to evaluate the state of the vehicle and a tire Magic Formula model based on a slip-slope approach to evaluate the potential friction. The results, in terms of the maximum achievable grip value, have been involved in autonomous driving vehicle-following maneuvers, as well as the operating condition of the vehicle at which such grip value can be reached. The effectiveness of the proposed approach is disclosed via an extensive numerical analysis covering a wide range of environmental, traffic, and vehicle kinematic conditions. Results confirm the ability of the approach to properly automatically adapting the inter-vehicle space gap and to avoiding collisions also in adverse road conditions (e.g., ice, heavy rain)

    On-Board Road Friction Estimation Technique for Autonomous Driving Vehicle-Following Maneuvers

    No full text
    In recent years, autonomous vehicles and advanced driver assistance systems have drawn a great deal of attention from both research and industry, because of their demonstrated benefit in reducing the rate of accidents or, at least, their severity. The main flaw of this system is related to the poor performances in adverse environmental conditions, due to the reduction of friction, which is mainly related to the state of the road. In this paper, a new model-based technique is proposed for real-time road friction estimation in different environmental conditions. The proposed technique is based on both bicycle model to evaluate the state of the vehicle and a tire Magic Formula model based on a slip-slope approach to evaluate the potential friction. The results, in terms of the maximum achievable grip value, have been involved in autonomous driving vehicle-following maneuvers, as well as the operating condition of the vehicle at which such grip value can be reached. The effectiveness of the proposed approach is disclosed via an extensive numerical analysis covering a wide range of environmental, traffic, and vehicle kinematic conditions. Results confirm the ability of the approach to properly automatically adapting the inter-vehicle space gap and to avoiding collisions also in adverse road conditions (e.g., ice, heavy rain)

    Conclusion: The science of conflict

    No full text
    This chapter discusses the application of scientific approaches to conflict studies. The emphasis is on recent advances in the field of biomolecular archaeology applied to human remains, most notably isotopic analyses, ancient DNA and radiocarbon dating. These techniques have the potential to address crucial questions regarding skeletons demonstrating violent injuries, such as the identity and origins of those involved. In addition, high-resolution dating can be crucial to determining whether a multiple burial represents a single or multiple events, as well as linking periods exhibiting greater violence with other social and/or environmental variables. This allows archaeologists to address broader questions concerning the role(s) of violent interactions in past societies

    Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes

    No full text
    corecore