2,012 research outputs found

    Parity Fluctuations Between Coulomb Blockaded Superconducting Islands

    Full text link
    We find that if two superconducting islands of different number parity are linked by a tunnel junction the unpaired electron in the odd island has a tendency to tunnel into the even island. This process leads to fluctuations in time of the number parity of each island, giving rise to a random telegraph noise spectrum with a characteristic frequency that has an unusual temperature dependence. This new phenomenon should be observable in a Cooper-pair pump and similar single-electron tunneling devices.Comment: 4 pages, self-unpacking uuencoded gz-compressed postscript file with 3 figures included; also available at http://www.lassp.cornell.edu/janko/publications.htm

    Far-infrared transmission studies of c-axis oriented superconducting MgB2 thin film

    Full text link
    We reported far-infrared transmission measurements on a c-axis oriented superconducting MgB2_{2} thin film in the frequency range of 30 ∼\sim 250 cm−1^{-1}. We found that these measurements were sensitive to values of scattering rate 1/τ1/\tau and superconducting gap 2Δ2\Delta. By fitting the experimental transmission spectra at 40 K and below, we obtained 1/τ=1/\tau = (700 ∼\sim 1000) cm−1^{-1} and 2Δ(0)≅2\Delta (0)\cong 42 cm−1^{-1}. These two quantities suggested that MgB2_{2} belong to the dirty limit.Comment: submitted at May

    Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study

    Full text link
    The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-rotor model in the low temperature regime. The phase diagram of the model is first analyzed within the mean-field approximation. This predicts at T=0T=0 a phase transition from the ordered to the disordered state when the strength of quantum fluctuations, characterized by the rotational constant Θ\Theta, exceeds a critical value ΘcMF\Theta_{\rm c}^{MF}. As a function of temperature, mean-field theory predicts a range of values of Θ\Theta where the system develops long-range order upon cooling, but enters again into a disordered state at sufficiently low temperatures (reentrance). The model is further studied by means of path integral Monte Carlo simulations in combination with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe

    Infrared conductivity of a d_{x^2-y^2}-wave superconductor with impurity and spin-fluctuation scattering

    Full text link
    Calculations are presented of the in-plane far-infrared conductivity of a d_{x^2-y^2}-wave superconductor, incorporating elastic scattering due to impurities and inelastic scattering due to spin fluctuations. The impurity scattering is modeled by short-range potential scattering with arbitrary phase shift, while scattering due to spin fluctuations is calculated within a weak-coupling Hubbard model picture. The conductivity is characterized by a low-temperature residual Drude feature whose height and weight are controlled by impurity scattering, as well as a broad peak centered at 4 Delta_0 arising from clean-limit inelastic processes. Results are in qualitative agreement with experiment despite missing spectral weight at high energies.Comment: 29 pages (11 tar-compressed-uuencoded Postscript figures), REVTeX 3.0 with epsf macro

    Low-Energy Linear Structures in Dense Oxygen: Implications for the ϵ\epsilon-phase

    Full text link
    Using density functional theory implemented within the generalized gradient approximation, a new non-magnetic insulating ground state of solid oxygen is proposed and found to be energetically favored at pressures corresponding to the ϵ\epsilon-phase. The newly-predicted ground state is composed of linear herringbone-type chains of O2_2 molecules and has {\it Cmcm} symmetry (with an alternative monoclinic cell). Importantly, this phase supports IR-active zone-center phonons, and their computed frequencies are found to be in broad agreement with recent infrared absorption experiments.Comment: 4 pages, 4 figure

    Magneto-optical Selection Rules in Bilayer Bernal Graphene

    Full text link
    The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the Landau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions

    Tissue Proteome of 2-Hydroxyacyl-CoA Lyase Deficient Mice Reveals Peroxisome Proliferation and Activation of ω-Oxidation

    Get PDF
    Peroxisomal fatty acid α-oxidation is an essential pathway for the degradation of β-carbon methylated fatty acids such as phytanic acid. One enzyme in this pathway is 2-hydroxyacyl CoA lyase (HACL1), which is responsible for the cleavage of 2-hydroxyphytanoyl-CoA into pristanal and formyl-CoA. Hacl1 deficient mice do not present with a severe phenotype, unlike mice deficient in other α-oxidation enzymes such as phytanoyl-CoA hydroxylase deficiency (Refsum disease) in which neuropathy and ataxia are present. Tissues from wild-type and Hacl1−/− mice fed a high phytol diet were obtained for proteomic and lipidomic analysis. There was no phenotype observed in these mice. Liver, brain, and kidney tissues underwent trypsin digestion for untargeted proteomic liquid chromatography-mass spectrometry analysis, while liver tissues also underwent fatty acid hydrolysis, extraction, and derivatisation for fatty acid gas chromatography-mass spectrometry analysis. The liver fatty acid profile demonstrated an accumulation of phytanic and 2-hydroxyphytanic acid in the Hacl1−/− liver and significant decrease in heptadecanoic acid. The liver proteome showed a significant decrease in the abundance of Hacl1 and a significant increase in the abundance of proteins involved in PPAR signalling, peroxisome proliferation, and omega oxidation, particularly Cyp4a10 and Cyp4a14. In addition, the pathway associated with arachidonic acid metabolism was affected; Cyp2c55 was upregulated and Cyp4f14 and Cyp2b9 were downregulated. The kidney proteome revealed fewer significantly upregulated peroxisomal proteins and the brain proteome was not significantly different in Hacl1−/− mice. This study demonstrates the powerful insight brought by proteomic and metabolomic profiling of Hacl1−/− mice in better understanding disease mechanism in fatty acid α-oxidation disorders

    The MEG detector for μ+→e+γ{\mu}+\to e+{\gamma} decay search

    Get PDF
    The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\ by using one of the most intense continuous μ+\mu^+ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.Comment: 59 pages, 90 figure

    Blinding for precision scattering experiments: The MUSE approach as a case study

    Full text link
    Human bias is capable of changing the analysis of measured data sufficiently to alter the results of an experiment. It is incumbent upon modern experiments, especially those investigating quantities considered contentious in the broader community, to blind their analysis in an effort to minimize bias. The choice of a blinding model is experiment specific, but should also aim to prevent accidental release of results before an analysis is finalized. In this paper, we discuss common threats to an unbiased analysis, as well as common quantities that can be blinded in different types of nuclear physics experiments. We use the Muon Scattering Experiment as an example, and detail the blinding scheme used therein.Comment: 6 pages, 3 figure

    Tunable Excitons in Biased Bilayer Graphene

    Full text link
    Recent measurements have shown that a continuously tunable bandgap of up to 250 meV can be generated in biased bilayer graphene [Y. Zhang et al., Nature 459, 820 (2009)], opening up pathway for possible graphene-based nanoelectronic and nanophotonic devices operating at room temperature. Here, we show that the optical response of this system is dominated by bound excitons. The main feature of the optical absorbance spectrum is determined by a single symmetric peak arising from excitons, a profile that is markedly different from that of an interband transition picture. Under laboratory conditions, the binding energy of the excitons may be tuned with the external bias going from zero to several tens of meV's. These novel strong excitonic behaviors result from a peculiar, effective ``one-dimensional'' joint density of states and a continuously-tunable bandgap in biased bilayer graphene. Moreover, we show that the electronic structure (level degeneracy, optical selection rules, etc.) of the bound excitons in a biased bilayer graphene is markedly different from that of a two-dimensional hydrogen atom because of the pseudospin physics
    • …
    corecore