8 research outputs found

    Nanoprobes to interrogate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruption

    Get PDF
    When a lipid membrane approaches a material/nanomaterial, nonspecific adhesion may occur. The interactions responsible for nonspecific adhesions can either preserve the membrane integrity or lead to its disruption. Despite the importance of the phenomenon, there is still a lack of clear understanding of how and why nonspecific adhesions may originate different resulting scenarios and how these interaction scenarios can be interrogated. This work aims at bridging this gap by investigating the interplay between cationic electrostatic and hydrophobic interactions in modulating the membrane stability during nonspecific adhesion phenomena. Here, the stability of the membrane has been studied employing anisotropic nanoprobes in zwitterionic lipid membranes with the support of coarse-grained molecular dynamics simulations to interpret the experimental observations. Lipid membrane electrical measurements and nanoscale visualization in combination with molecular dynamics simulations revealed the phenomena driving nonspecific adhesion. Any interaction with the lipidic bilayer is defect-mediated involving cationic electrostatically-driven lipid extractions and hydrophobicallydriven chains protrusion, whose interplay determines the existence of a thermodynamic optimum for the membrane structural integrity. These findings unlock unexplored routes to exploit nonspecific adhesion in lipid membranes. The proposed platform can act as a straightforward probing tool to locally interrogate interactions between synthetic materials and lipid membranes for the design of antibacterials, antivirals, and scaffolds for tissue engineering

    Lignin: a sustainable antiviral coating material

    Get PDF
    Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers. These approaches, however, even if successful, will have to face great challenges when it comes to large-scale applications and their environmental sustainability. Here, an antiviral surface coating was prepared by spin-coating lignin, a natural biomass residue of the paper production industry. We show effective inactivation of herpes simplex virus type 2 (>99% after 30 min) on a surface coating that is low-cost and environmentally sustainable. The antiviral mechanism of the lignin surface was investigated and is attributed to reactive oxygen species generated upon oxidation of lignin phenols. This mechanism does not consume the surface coating (as opposed to the release of a specific antiviral agent) and does not require regeneration. The coating is stable in ambient conditions, as demonstrated in a 6 month aging study that did not reveal any decrease in antiviral activity. This research suggests that natural compounds may be used for the development of affordable and sustainable antiviral coatings
    corecore